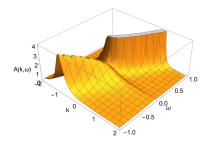
Strange metals from local quantum chaos

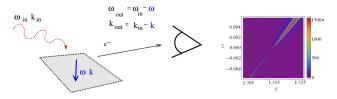
John McGreevy (UCSD)

based on work with Daniel Ben-Zion (UCSD) 1711.02686, PRB Aavishkar Patel, Subir Sachdev (Harvard), Dan Arovas (UCSD) 1712.05026, PRX



Compressible states of fermions at finite density

The metallic states that we understand well are Fermi liquids. Landau quasiparticles \rightarrow single-fermion Green function G_R has poles at $k_{\perp} \equiv |\vec{k}| - k_F = 0$, $\omega = \omega_{\star}(k_{\perp}) \sim 0$: $G_R \sim \frac{Z}{\omega - v_F k_{\perp} + i\Gamma}$ Measurable by angle-resolved photoemission:

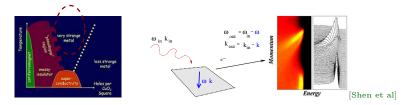


Intensity \propto spectral density : $A(\omega, k) \equiv \operatorname{Im} G_R(\omega, k) \xrightarrow{k_{\perp} \to 0} Z\delta(\omega - v_F k_{\perp})$

quasiparticles are long-lived: width is $\Gamma \sim \omega_{\star}^2$, Residue Z (overlap with external e^-) is finite on Fermi surface. Robust and calculable theory.

Mysteries of non-Fermi liquids

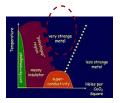
There are other states with a Fermi surface, but no pole in G_R at $\omega = 0$. e.g.: 'normal' phase of optimally-doped cuprates: ('strange metal')



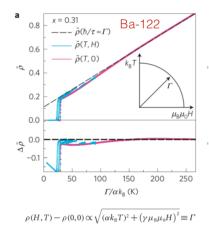
among other anomalies indicating absence of quasiparticles: ARPES shows gapless modes at finite k (a Fermi surface) with width $\Gamma(\omega_{\star}) \sim \omega_{\star}$, vanishing residue $Z \stackrel{k_{\perp} \to 0}{\to} 0$. NFL: Still a sharp Fermi surface CONTRACTOR CONTRACTOR CONTRACTOR 500 but no long-lived quasiparticles. pab (μΩcm) More prominent 300 200 mystery of the strange metal phase: 100 e-e scattering: $\rho \sim T^2$, phonons: $\rho \sim T^5$, ... 200 400 no known robust effective theory: $\rho \sim T$.

[S. Martin et al, PRB41, 846 (1990)]

New mysteries of non-Fermi liquids



New mystery of the strange metal phase: Linear-B magnetoresistance, scaling between B, T:

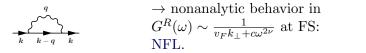


I. M. Hayes et. al., Nat. Phys. 2016

Non-Fermi liquids in terms of single-fermion G

- Luttinger liquid in 1+1 dims. $G^R(k,\omega) \sim (k-\omega)^{\alpha}$
- \checkmark
- loophole in RG argument for ubiquity of FL: couple a Landau FL perturbatively to a bosonic mode

(e.g.: magnetic photon, emergent gauge field, critical order parameter...)



[Huge literature: Hertz, Millis, Nayak-Wilczek, Chubukov, S-S Lee, Metlitski-Sachdev,

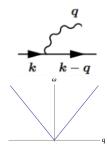
Mross-JM-Liu-Senthil, Kachru-Torroba-Raghu...]

Not strange enough:

These NFLs are not strange metals in terms of transport. $\rho \sim T^{2\nu+2} \gg T$ If the quasiparticle is killed by a boson with $\omega \sim q^z$, $z \sim 1$, amplitude optimized approximates

small-angle scattering dominates

 \implies 'transport lifetime' \gg 'single-particle lifetime'



Frameworks for non-Fermi liquid in $d \ge 1$

• a Fermi surface coupled to a critical boson field

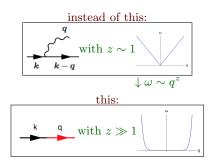
• a Fermi surface mixing with a bath of critical fermionic fluctuations with large dynamical exponent $z \gg 1$ Discovered with AdS/CFT [Faulkner-Liu-JM-Vegh 0907.2694, Faulkner-Polchinski 1001.5049, FLMV+Iqbal 1003.1728]

$$L = \psi \left(\omega - v_F k_\perp \right) \psi + L(\chi) + \psi \chi + \psi \bar{\chi}$$

 χ : fermionic operator with $\mathcal{G} \equiv \langle \bar{\chi} \chi \rangle = c(k) \omega^{2\nu}$

$$\overline{\psi}\psi = \frac{1}{\omega - v_F k_\perp - \mathcal{G}}$$
 i.e., $\Sigma^{\psi} \propto \mathcal{G}$.

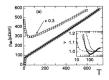
Charge transport and momentum sinks



The contribution to the conductivity from the Fermi surface

[Faulkner-Iqbal-Liu-JM-Vegh, 1003.1728 and 1306.6396]: is $\rho_{\rm FS} \sim T^{2\nu}$ when $\Sigma \sim \omega^{2\nu}$. Dissipation of current is controlled by the decay of the fermions into the χ DoFs. \implies single-particle lifetime controls transport.

(marginal Fermi liquid: $\nu = \frac{1}{2}^+$ [Varma et al] $\implies \rho_{FS} \sim T$.)



A few words about the holographic construction

Certain strongly-coupled large-N field theories have a dual description in terms of gravity in extra dimensions.

Anti-de Sitter (AdS _{d+1}) spacetime $ds^2 = \frac{dr^2 + dx_{\mu}dx^{\mu}}{r^2}$	\longleftrightarrow	vacuum of conformal field theory
Symmetries of AdS r^2	$\leftrightarrow \rightarrow$	conformal symmetry $\supset x^{\mu} \rightarrow \lambda x^{\mu}$
Bulk metric $g_{\mu\nu}$	\longleftrightarrow	$T_{\mu\nu}$ stress tensor
Bulk $U(1)$ gauge field A_{μ}	$\leftrightarrow \rightarrow$	J_{μ} conserved current
Bulk spinor field ψ_{α}	\longleftrightarrow	Ψ fermionic operator
there at a second secon	~~~ `	Turn on a chemical po- tential to make a finite

UV

density of CFT stuff.

A few words about the holographic construction The near-horizon region of the geometry is $AdS_2 \times \mathbb{R}^d$

$$ds^2 = \frac{-dt^2 + d\zeta^2}{\zeta^2} + d\vec{x}^2, \ A = \frac{\mathcal{E}dt}{\zeta}$$

has 0+1d conformal symmetry. This describes a $z = \infty$ fixed point at large N:

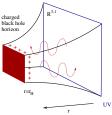
many critical dofs which are localized.

Shortcomings:

- The Fermi surface degrees of freedom are a small part $(o(N^0))$ of a large (conducting) system $(o(N^2))$.
- Here N^2 is the control parameter which makes gravity classical (and holography useful).

• Understanding their effects on the black hole requires quantum gravity. [Some attempts: Suh-Allais-JM 2012, Allais-JM 2013]

All we need is a $z = \infty$ fixed point (with fermions, and with U(1) symmetry).



SYK with conserved U(1) A solvable $z = \infty$ fixed point [Sachdev, Ye, Kitaev]: $H_{\text{SYK}} = \sum_{\substack{ijkl \\ ijkl}}^{N} J_{ijkl} \chi_{i}^{\dagger} \chi_{j}^{\dagger} \chi_{k} \chi_{l}.$ $\overline{J_{ijkl}} = 0, \ \overline{J_{ijkl}^{2}} = \frac{J^{2}}{2N3}$

Schwinger-Dyson equations:

$$\mathcal{G}^{-1}(\omega) = (\mathbf{i}\omega)^{-1} - \Sigma(\omega) \stackrel{\omega \ll J}{\longrightarrow} \mathcal{G}(\omega)\Sigma(\omega) \approx -1$$
$$\Sigma(\tau) = \underbrace{I}_{\Sigma} = J^2 \mathcal{G}^2(\tau) \mathcal{G}(-\tau)$$

 $\implies \mathcal{G}(\omega) \propto (\mathbf{i}\omega)^{-1/2}, \nu(\chi) = -\frac{1}{4}$. A (very) compressible state of fermions at finite density: Low-energy level spacing is e^{-Ns_0} ($s_0 < \ln 2$).

(vs. 1/N for a model with quasiparticles, like SYK₂).

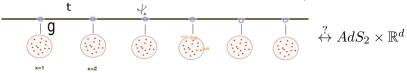
• The S-D equations have a low-energy conformal symmetry \implies finite-temperature correlators also determined.

• Also useful is the 'bath field': $\tilde{\chi}_i \equiv J_{ijkl}\chi_j^{\dagger}\chi_k\chi_l$, which has $\langle \tilde{\chi}^{\dagger}\tilde{\chi} \rangle \propto (\mathbf{i}\omega)^{+\frac{1}{2}}, \quad \nu(\tilde{\chi}) = +\frac{1}{4}.$

• Duality: this model has many properties in common with gravity (plus electromagnetism) in AdS_2 .

Using SYK clusters to kill the quasiparticles and take their momentum

To mimic $AdS_2 \times \mathbb{R}^d$, consider a *d*-dim'l lattice of SYK models:



$$H_0 = \sum_{\langle xy \rangle \in \text{lattice}} t\left(\psi_x^{\dagger}\psi_y + hc\right) + \sum_{x \in \text{lattice}} H_{SYK}(\chi_{xi}, J_{ijkl}^x)$$

 $H = H_0 + H_{\text{int}}$

Couple SYK clusters to Fermi surface

• [D. Ben-Zion, JM, 1711.02686]: couple by hybridization

$$H_{\rm int} = \sum_{x,i} g_{xi} \psi_x^{\dagger} \chi_{xi} + h.c.$$

by random $gs (\overline{g_{ix}} = 0, \ \overline{g_{ix}g_{jy}} = \delta_{ij}\delta_{xy}g^2/N)$ \longrightarrow Evidence for finite-g, N fixed point, 'strange semiconductor' with $\rho(T) \sim T^{-1/2}$.

• [A. Patel, JM, D. Arovas, S. Sachdev, 1712.05026, D. Chowdhury, Y. Werman, E. Berg, T. Senthil, 1801.06178]: couple by density-density interaction

$$H_{\rm int} = \sum_{x,i} g_{xabij} \psi^{\dagger}_{xa} \psi_{xb} \chi^{\dagger}_{xi} \chi_{xj} + h.c.$$

by random $gs (\overline{g_{xabij}} = 0, \overline{g_{xabij}} \overline{g_{x'a'b'i'j'}} = \delta_{xabij,x'a'b'i'j'} \overline{g}^2/N)$ \longrightarrow Controlled (intermediate-temperature) marginal fermi liquid, $\rho(T) \sim T$, realistic magnetoresistance.

Pause to advertise related work

 [Gu-Qi-Stanford]: a chain of SYK clusters with 4-fermion couplings (no hybridization, no Fermi surface)

 [Banerjee-Altman]: add all-to-all quadratic fermions to SYK (no locality)

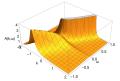
 [Song-Jian-Balents]: a chain of SYK clusters with quadratic couplings (no Fermi surface)

Large-N analysis

$$= \frac{1}{\omega - v_F k_\perp}, \qquad = \langle \chi_x^{\dagger} \chi_y \rangle, \qquad = \text{disorder contraction}$$

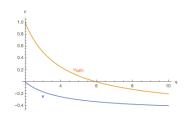
 $\implies \text{the } \psi \text{ self-energy is } \Sigma(\omega, k) = \mathcal{G}(\omega)$ (just as in the holographic model).

$$G_{\psi}(\omega,k) \stackrel{\text{small } \omega}{=} \frac{1}{\omega - v_F k_{\perp} - \mathcal{G}(\omega)}$$



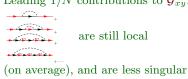
This has
$$\nu = -\frac{1}{4}$$
:
 $\mathcal{G}(\omega) \sim \omega^{-\frac{1}{2}}$.
 $\implies \rho(T) \sim \frac{1}{\sqrt{T}}$

For more general q in $H(\chi) = J_{i_1 \cdots i_q} \chi_{i_1}^{\dagger} \cdots \chi_{i_q}$, we'd have $\nu(q) = \frac{1-q}{2q}$. Coupling to bath field would give $\tilde{\nu}(q) = -\frac{1}{2} + \frac{3}{q} \xrightarrow{q \to 4} + \frac{1}{4}$.



Does the Fermi surface destroy the clusters? Leading 1/N contributions to $\mathcal{G}_{\pi n}$:

$$\overline{g_{ix}} = 0$$
, $\overline{g_{ix}g_{jy}} = \delta_{ij}\delta_{xy}g^2/N$.
The 'SYK-on' propagator \mathcal{G} looks like:



than $\omega^{-1/2}$.

 $z = \infty$ behavior survives.

An effective action which reproduces diagrammatic results:

$$\overline{Z^n} = \int [d\mathcal{G}d\Sigma d\rho d\sigma] e^{-NS[\mathcal{G},\Sigma,\rho,\sigma]}$$
$$\frac{\delta S}{\delta\{\mathcal{G},\Sigma,\rho,\sigma\}} = 0 \implies$$
$$\Sigma = -J^2 |\mathcal{G}|^2 \mathcal{G}, \quad \mathcal{G} = -\frac{1}{\partial_t - \Sigma - G_\psi/N}, \quad G_\psi = -\frac{1}{G_{\psi 0}^{-1} - \mathcal{G}}.$$

But:
$$\lim_{N \to \infty} \lim_{\omega \to 0} \stackrel{?}{=} \lim_{\omega \to 0} \lim_{N \to \infty}$$

RG analysis of impurity problem

Weak coupling: Consider a single SYK cluster coupled to FS,

 $g \ll t, J.$ Following Kondo literature [Affleck] only s-wave couples:

$$H_{FS} = \frac{v_F}{2\pi} \int_0^\infty dr \left(\psi_L^{\dagger} \partial_r \psi_L - \psi_R^{\dagger} \partial_r \psi_R \right) \implies [\psi_{L/R}] = \frac{1}{2}.$$

$$\Delta H = g \psi_L^{\dagger}(0) \chi, \qquad \Delta \tilde{H} = \tilde{g} \psi_L^{\dagger}(0) \tilde{\chi}.$$

$$\tilde{\chi}_i \equiv J_{ijkl} \chi_j^{\dagger} \chi_k \chi_l. \quad \chi \equiv g_i \chi_i / g.$$
Note for later:

$$[\int \psi^{\dagger} \chi] = -1 + \frac{1}{2} + \frac{1}{4} = -\frac{1}{4} \qquad \begin{bmatrix} \int dt \ \psi^{\dagger} \tilde{\chi} \end{bmatrix} = -1 + \frac{1}{2} + \frac{3}{4} = \frac{1}{4} \qquad \begin{bmatrix} \int \psi^{\dagger} \psi \chi^{\dagger} \chi \end{bmatrix} = \frac{1}{2}.$$

is relevant.

is irrelevant.

 $-1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$

is irrelevant.

Strong coupling: At large enough $g \ (g \gg t, J)$, this is a highly-underscreened Anderson model: ψ_x and $\chi_x \equiv \frac{1}{q} \sum_i g_i \chi_{ix}$ pair up, $N \rightarrow N - 1.$

Topology of coupling space

$$H_{\text{int}} = \sum g\psi^{\dagger}\chi + h.c.$$

Possibilities for beta function
(arrows toward IR):

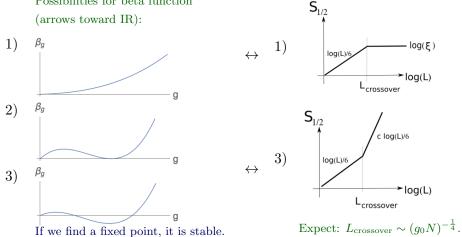
Consequences for entanglement entropy of half-chain at small g_0 :

log(ξ)

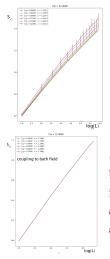
>log(L)

>log(L)

c log(L)/6

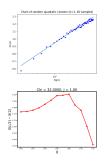


Instead of quantum gravity, DMRG



(1) Half-chain entanglement entropy grows faster with Lthan free-fermion answer!

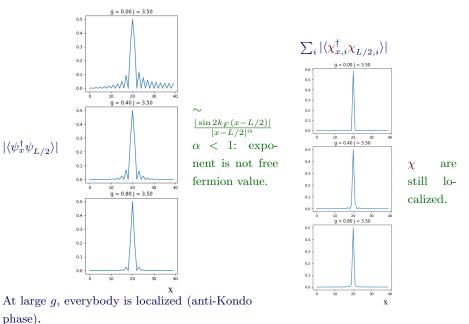
(2) Coupling to bath field $\tilde{g}\psi\tilde{\chi}$ is irrelevant – same as free fermion answer.



(3) Growth doesn't happen for quadratic clusters (SYK₂)

(4) At large g, entanglement is destroyed.

Correlation functions



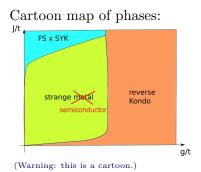
Conclusions on hybridization coupling

- \bullet \exists an interesting NFL fixed point.
- It's not Lorentz invariant.
- Numerical evidence is in 1d, but it's not a Luttinger liquid: $c \neq 1$.
- Can access perturbatively by $q = 2 + \epsilon$

$$(H(\chi) = J_{i_1 \cdots i_q} \chi_{i_1}^{\dagger} \cdots \chi_{i_q}).$$

$$\delta g^2 = -\frac{1}{2} \longrightarrow \beta_{g^2} \simeq \epsilon g^2 - \frac{cv_F}{Jk_F^{d-1}} g^4$$

• It has a Fermi surface (singularity of G_R at $\omega \to 0, k \to k_F$) but it's not metallic! $\rho(T) \sim T^{-1/2}$.

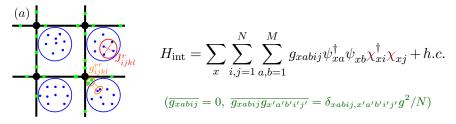


Density-density coupling

[Aavishkar Patel, JM, D. Arovas, S. Sachdev, 1712.05026

D. Chowdhury, Y. Werman, E. Berg, T. Senthil, 1801.06178]

Demanding an IR fixed point is asking too much.



Large N, M Schwinger-Dyson equations are:
$$\begin{split} & \Sigma_{\tau-\tau'} = -J^2 \mathcal{G}_{\tau-\tau'}^2 \mathcal{G}_{\tau'-\tau} - \frac{M}{N} g^2 \mathcal{G}_{\tau-\tau'} G_{\tau-\tau'}^{\psi} G_{\tau'-\tau}^{\psi}, \quad \mathcal{G}(i\omega_n) = \frac{1}{i\omega_n + \mu - \Sigma(i\omega_n)}, \\ & \Sigma_{\tau-\tau'}^{\psi} = -g^2 G_{\tau-\tau'}^{\psi} G_{\tau-\tau'} G_{\tau'-\tau}, \end{split}$$

 ψ, χ coupled only by local Green's function of itinerant fermions: $G^{\psi}(\mathbf{i}\omega_n) \equiv \int d^d p G^{\psi}(\mathbf{i}\omega_n, p) = \int \frac{d^d p}{(2\pi)^d} \frac{1}{\mathbf{i}\omega_n - \epsilon_k + \mu_{\psi} - \Sigma^{\psi}(\mathbf{i}\omega_n)} \simeq -\frac{\mathbf{i}}{2}\nu(0) \operatorname{sgn}(\omega_n)$ $(\nu(0) \equiv \operatorname{dos} \operatorname{at} FS)$

Fate of conduction electrons

Im

The effect on the itinerant fermions is then

$$\begin{split} \Sigma^{\psi}(\omega,q) &= \underbrace{\qquad} \sim g^2 \int \mathrm{d}\omega_{1,2} \frac{\mathrm{sgn}(\omega_1)}{|\omega_1|^{1/2}} \frac{\mathrm{sgn}(\omega_2)}{|\omega_2|^{1/2}} G^{\psi}(\omega+\omega_1+\omega_2) \\ &\sim g^2 \nu(0) \left(\omega \log \omega/\Lambda - \mathbf{i}\pi \omega\right) \\ \Sigma^{\psi}(i\omega_n,q) &= \frac{ig^2 \nu(0)T}{2J \cosh^{1/2}(2\pi\mathcal{E})\pi^{3/2}} \left(\frac{\omega_n}{T} \ln\left(\frac{2\pi T e^{\gamma}E^{-1}}{J}\right) + \frac{\omega_n}{T} \psi\left(\frac{\omega_n}{2\pi T}\right) + \pi\right) \\ &\rightarrow \text{ single-particle decay rate} = \text{ transport scattering rate:} \\ &\gamma \equiv -2 \mathrm{Im} \Sigma^{\psi}_{R}(\omega=0) = \frac{g^2 \nu(0)T}{J\sqrt{\pi} \cosh(2\pi\mathcal{E})}. \qquad (\mathcal{E} \text{ measures filling.}) \\ \end{split}$$
Precedent for this mechanism:
[Varma et al 89] Im $\chi(\omega,q) = \begin{bmatrix} & & \\ &$

Transport in a single domain

Both IM and MFL have $\rho(T) \sim T$:

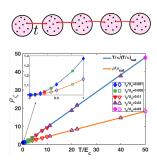
$$\begin{split} \sigma_0^{\rm MFL} &= M \frac{v_F^2 \nu(0)}{16T} \int_{-\infty}^{\infty} \frac{dE_1}{2\pi} {\rm sech}^2 \left(\frac{E_1}{2T}\right) \frac{1}{|{\rm Im} \Sigma_R^c(E_1)|} \\ &= 0.120251 \times M T^{-1} J \times \left(\frac{v_F^2}{g^2}\right) \cosh^{1/2}(2\pi \mathcal{E}). \end{split}$$

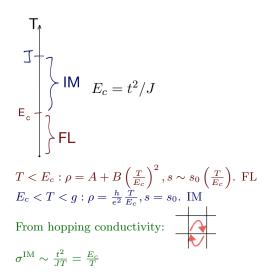
Both violate Wiedemann-Franz law:

$$L^{\rm MFL} = \frac{\kappa_0^{\rm MFL}}{\sigma_0^{\rm MFL}T} = \frac{\int_{-\infty}^{\infty} \frac{dE_1}{2\pi} E_1^2 \operatorname{sech}^2\left(\frac{E_1}{2}\right) \frac{1}{\left|\operatorname{Im}[E_1\psi(-iE_1/(2\pi))+i\pi]\right|}}{\int_{-\infty}^{\infty} \frac{dE_1}{2\pi} \operatorname{sech}^2\left(\frac{E_1}{2}\right) \frac{1}{\left|\operatorname{Im}[E_1\psi(-iE_1/(2\pi))+i\pi]\right|}}$$
$$= 0.713063 \times L_0 < L_0 \equiv \frac{\pi^2}{3}$$

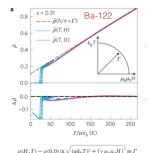
 $\left(L^{IM}=\frac{\pi^2}{8}\right)$ [Song-Jian-Balents, PRL 119, 216601 (2017)]

More on Incoherent Metal





Magnetotransport is very different



IM has no FS and (hence) negligible magnetoresistance: perturbation theory in hopping is valid exactly in IM regime: $t/(J_{\rm IM}T)^{1/2}\ll 1,$ $(J_{\rm IM}\equiv g^2/J)$.

$$\sigma_{xx}^{\text{IM}} \sim \frac{t^2}{J_{IM}T} \quad \swarrow \quad \sigma_{xy}^{\text{IM}} \sim \frac{t^4 \sin \mathcal{B}}{(J_{\text{IM}}T)^2}.$$
$$\mathcal{B} \equiv \frac{Ba^2}{h/c}$$

I. M. Hayes et. al., Nat. Phys. 2016

In MFL: exact quantum Boltzmann equation at large M, N $(1 - \partial_{\omega} \operatorname{Re}(\Sigma^{\psi}))\partial_t \delta n(t, k, \omega) + v_F \hat{k} \cdot \vec{E}(t) n'_f(\omega) + v_F (\hat{k} \times \mathcal{B}\hat{z}) \cdot \nabla_k \delta n(t, k, \omega) = 2\delta n(t, k, \omega) \operatorname{Im}(\Sigma^{\psi}(\omega))$ $\sigma_{(L,H)}^{MFL} = -M \frac{v_F^2 \nu(0)}{16T} \int_{-\infty}^{\infty} \frac{dE_1}{2\pi} \operatorname{sech}^2 \left(\frac{E_1}{2T}\right) \frac{\left(\operatorname{Im}[\Sigma_R^c(E_1)], (v_F/(2k_F))\mathcal{B}\right)}{\operatorname{Im}[\Sigma_R^c(E_1)]^2 + (v_F/(2k_F))^2\mathcal{B}^2},$ $\sigma_L^{MFL} \sim T^{-1} s_L((v_F/k_F)(\mathcal{B}/T)), \quad \sigma_H^{MFL} \sim -\mathcal{B}T^{-2} s_H((v_F/k_F)(\mathcal{B}/T)).$ $s_{L,H}(x \to \infty) \propto 1/x^2, \quad s_{L,H}(x \to 0) \propto x^0.$ So far, ρ_L saturates at large B.

Macroscopic disorder

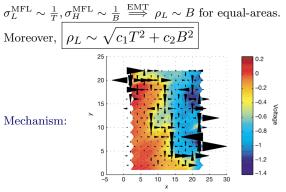
Suppose μ varies from region to region.

 $\vec{\nabla} \cdot \vec{J}(x) = 0, \vec{J}(x) =$ $\sigma(x) \cdot \vec{E}(x), \vec{E}(x) = -\vec{\nabla} \Phi(x).$ Effective medium theory

[Stroud 75, Parish-Littlewood]

Simple case: two types of

domains, approximately equal

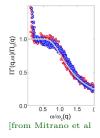


[from Parish-Littlewood 03]

Local Hall resistivity lengthens current path $\propto B.$

Some questions we can now ask

• Plasmon spectrum of BSCCO recently measured by EELS [Mitrano et al 1708.01929] shows apparent agreement with MFL form of $\text{Im}\chi(\omega, q)$. Can we say more about plasmon damping in the solvable MFL? About the doping dependence of χ ?



1708.01929]

- Acoustic damping in MFL?
- Do we need SYK? *e.g.* Infinite-randomness fixed points have $z = \infty$.
- Is my title accurate?

Two aspects of SYK:

Maximal chaos: $\langle | \{ \chi^{\dagger}(t), \chi(0) \} |^2 \rangle \sim e^{\lambda_L t}, \ \lambda_L = 2\pi T$

- near the middle of the spectrum.
- $z = \infty$ local criticality: $\mathcal{G}(\omega) \sim \omega^{2\nu}$
- near the groundstate.

Q: Can we have one without the other?

A [V. Rosenhaus]: Probably not.

The end.

Thank you for listening.

Thanks to Open Science Grid for computer time.