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Spectral Correlations in Quantum Systems

Consider hamiltonian H of a quantum system with finite volume L (length, in
1D) and let {En}n=1,...,N=2L be its spectrum.

Tomaž Prosen /w Bertini and Kos, arXiv:1805.00931



Spectral Correlations in Quantum Systems

Consider hamiltonian H of a quantum system with finite volume L (length, in
1D) and let {En}n=1,...,N=2L be its spectrum.

Analogous object in periodically driven systems

H(t) = H(t + T )

is the set of quasi-energies {ϕn ∈ [0, 2π]}n=1,...,N such that {e−iϕn} is the
spectrum of the Floquet operator

U = T exp

(
−i
∫ T

0
ds H(s)

)
.
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The spectrum as a gas in one dimension

Spectral density (1-point function):

ρ(ϕ) =
2π
N
∑
n

δ(ϕ− ϕn).

Spectral pair correlation function (2-point function):

r(ϑ) =
1
2π

∫ 2π

0
dϕρ(ϕ+ 1

2ϑ)ρ(ϕ− 1
2ϑ)− 1.

Spectral Form Factor (SFF) (Fourier transform of 2-point function):

K(t) =
N 2

2π

∫ 2π

0
dϑr(ϑ)e itϑ =

∑
m,n

e it(ϕm−ϕn) −N 2δt,0

=
∣∣trU t

∣∣2 −N 2δt,0, t ∈ Z.
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0
dϑr(ϑ)e itϑ =

∑
m,n

e it(ϕm−ϕn) −N 2δt,0

=
∣∣trU t

∣∣2 −N 2δt,0, t ∈ Z.

Caveat: SFF is not self-averaging! Consider instead K̄(t) = E[K(t)].
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The Quantum Chaos Conjecture

Casati, Guarnerri, Valz-Gris 1980, Berry 1981, Bohigas, Giannoni, Schmidt 1984

The spectral fluctuations of quantum systems with chaotic and ergodic classical
limit are universal and described by Random Matrix Theory (RMT).

The same holds for periodically-driven systems if one considers the statis-
rtics of quasi-energies instead.
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Figure 1. Examples of trajectories of a particle bouncing in a cavity: (a) non-chaotic circular and (b) chaotic
Bunimovich stadium. The images were taken from scholarpedia [60].

of freedom N :

{Ij , H} = 0, {Ij , Ik} = 0, where {f, g} =
X

j=1,N

@f

@qj

@g

@pj
� @f

@pj

@g

@qj
. (1)

From Liouville’s integrability theorem [59], it follows that there is a canonical trans-
formation (p, q) ! (I,⇥) (where I,⇥ are called action-angle variables) such that
H(p, q) = H(I) [58]. As a result, the solutions of the equations of motion for the action-
angle variables are trivial: Ij(t) = I0

j = constant, and ⇥j(t) = ⌦jt + ⇥j(0). For obvious
reasons, the motion is referred to as taking place on an N -dimensional torus, and it is
not chaotic.

To get a feeling for the di↵erences between integrable and chaotic systems, in Fig. 1,
we illustrate the motion of a particle in both an integrable and a chaotic two-dimensional
cavity [60]. Figure 1(a) illustrates the trajectory of a particle in an integrable circular
cavity. It is visually apparent that the trajectory is a superposition of two periodic mo-
tions along the radial and angular directions. This is a result of the system having two
conserved quantities, energy and angular momentum [61]. Clearly, the long-time aver-
age of the particle density does not correspond to a uniform probability which covers
phase space. Figure 1(b), on the other hand, shows a trajectory of a particle in a chaotic
Bunimovich stadium [10], which looks completely random. If one compares two trajec-
tories that are initially very close to each other in phase space one finds that, after a
few bounces against the walls, they become uncorrelated both in terms of positions and
directions of motion. This is a consequence of chaotic dynamics.

There are many examples of dynamical systems that exhibit chaotic behavior. A nec-
essary, and often su�cient, condition for chaotic motion to occur is that the number of
functionally independent conserved quantities (integrals of motion), which are in involu-
tion, is smaller than the number of degrees of freedom. Otherwise, as mentioned before,
the system is integrable and the dynamics is “simple”. This criterion immediately tells us
that the motion of one particle, without internal degrees of freedom, in a one-dimensional
system, described by a static Hamiltonian, is integrable. The energy provides a unique
(up to a sign) relation between the coordinate and the momentum of the particle. In two
dimensions, energy conservation is not su�cient to constrain the two components of the
momentum at a given position in space, and chaos is possible. However, if an additional
conservation law is present, e.g., angular momentum in the example of Fig. 1(a), then
the motion is regular. As a generalization of the above, a many-particle system is usu-
ally considered chaotic if it does not have an extensive number of conserved quantities.

7
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3. Quantum Chaos in Physical Systems

3.1. Examples of Wigner-Dyson and Poisson Statistics

Random matrix statistics has found many applications since its introduction by Wigner.
They extend far beyond the framework of the original motivation, and have been inten-
sively explored in many fields (for a recent comprehensive review, see Ref. [93]). Examples
of quantum systems whose spectra exhibit Wigner-Dyson statistics are: (i) heavy nuclei
[94], (ii) Sinai billiards (square or rectangular cavities with circular potential barriers in
the center) [85], which are classically chaotic as the Bunimovich stadium in Fig. 1, (iii)
highly excited levels5 of the hydrogen atom in a strong magnetic field [95], (iv) Spin-1/2
systems and spin-polarized fermions in one-dimensional lattices [69, 70]. Interestingly, the
Wigner-Dyson statistics is also the distribution of spacings between zeros of the Riemann
zeta function, which is directly related to prime numbers. In turn, these zeros can be
interpreted as Fisher zeros of the partition function of a particular system of free bosons
(see Appendix B). In this section, we discuss in more detail some examples originating
from over 30 years of research.
Heavy nuclei - Perhaps the most famous example demonstrating the Wigner-Dyson
statistics is shown in Fig. 2. That figure depicts the cumulative data of the level spacing
distribution obtained from slow neutron resonance data and proton resonance data of
around 30 di↵erent heavy nuclei [71, 96]. All spacings are normalized by the mean level
spacing. The data are shown as a histogram and the two solid lines depict the (GOE)
Wigner-Dyson distribution and the Poisson distribution. One can see that the Wigner-
Dyson distribution works very well, confirming Wigner’s original idea.

Figure 2. Nearest neighbor spacing distribution for the “Nuclear Data Ensemble” comprising 1726 spacings

(histogram) versus normalized (to the mean) level spacing. The two lines represent predictions of the random

matrix GOE ensemble and the Poisson distribution. Taken from Ref. [96]. See also Ref. [71].

Single particle in a cavity - Next, let us consider a much simpler setup, namely, the
energy spectrum of a single particle in a cavity. Here, we can contrast the Berry-Tabor
and BGS conjectures. To this end, in Fig. 3, we show the distribution of level spacings
for two cavities: (left panel) an integrable rectangular cavity with sides a and b such
that a/b = 4

p
5 and ab = 4⇡ and (right panel) a chaotic cavity constructed from two

circular arcs and two line segments (see inset) [80]. These two plots beautifully confirm
the two conjectures. The distribution on the left panel, as expected from the Berry-Tabor
conjecture, is very well described by the Poisson distribution. This occurs despite the fact

5The low-energy spectra of this system exhibits Poissonian level statistics. This is understandable as, at low

energies, the motion of the equivalent classical system is regular [95]. See also Fig. 4.
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Figure 1. One of the regions proven by Sinai to
be classically chaotic is this region Ω
constructed from line segments and circular
arcs.

Traditionally, analysis of the spectrum recovers
information such as the total area of the billiard,
from the asymptotics of the counting function
N(λ) = #{λn ≤ λ}: As λ → ∞, N(λ) ∼ area

4π
λ

(Weyl’s law). Quantum chaos provides completely
different information: The claim is that we should
be able to recover the coarse nature of the dynam-
ics of the classical system, such as whether they
are very regular (“integrable”) or “chaotic”. The
term integrable can mean a variety of things, the
least of which is that, in two degrees of freedom,
there is another conserved quantity besides ener-
gy, and ideally that the equations of motion can be
explicitly solved by quadratures. Examples are the
rectangular billiard, where the magnitudes of the
momenta along the rectangle’s axes are conserved,
or billiards in an ellipse, where the product of an-
gular momenta about the two foci is conserved,
and each billiard trajectory repeatedly touches a
conic confocal with the ellipse. The term chaotic
indicates an exponential sensitivity to changes
of initial condition, as well as ergodicity of the
motion. One example is Sinai’s billiard, a square
billiard with a central disk removed; another class
of shapes investigated by Sinai, and proved by him
to be classically chaotic, includes the odd region
shown in Figure 1. Figure 2 gives some idea of how
ergodicity arises. There are many mixed systems
where chaos and integrability coexist, such as the
mushroom billiard—a semicircle atop a rectangu-
lar foot (featured on the cover of the March 2006
issue of the Notices to accompany an article by
Mason Porter and Steven Lansel).

Figure 2. This figure gives some idea of how
classical ergodicity arises in Ω.

s = 0 1 2 3 4

y = e�s

Figure 3. It is conjectured that the distribution
of eigenvalues π2(m2/a2 + n2/b2) of a
rectangle with sufficiently incommensurable
sides a, b is that of a Poisson process. The
mean is 4π/ab by simple geometric reasoning,
in conformity with Weyl’s asymptotic formula.
Here are plotted the statistics of the gaps
λi+1 − λi found for the first 250,000
eigenvalues of a rectangle with side/bottom
ratio 4

√
5 and area 4π , binned into intervals of

0.1, compared to the expected probability
density e−s .
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s = 0 1 2 3 4

GOE distribution

Figure 4. Plotted here are the normalized gaps
between roughly 50,000 sorted eigenvalues

for the domain Ω, computed by Alex Barnett,
compared to the distribution of the

normalized gaps between successive
eigenvalues of a large random real symmetric
matrix picked from the “Gaussian Orthogonal

Ensemble”, where the matrix entries are
independent (save for the symmetry

requirement) and the probability distribution
is invariant under orthogonal transformations.

One way to see the effect of the classical dy-
namics is to study local statistics of the energy
spectrum, such as the level spacing distribution
P(s), which is the distribution function of nearest-
neighbor spacings λn+1 − λn as we run over all
levels. In other words, the asymptotic propor-
tion of such spacings below a given bound x is∫ x
−∞ P(s)ds. A dramatic insight of quantum chaos

is given by the universality conjectures for P(s):
• If the classical dynamics is integrable, then

P(s) coincides with the corresponding quantity for
a sequence of uncorrelated levels (the Poisson en-
semble) with the same mean spacing: P(s) = ce−cs ,
c = area/4π (Berry and Tabor, 1977).
• If the classical dynamics is chaotic, then P(s)

coincides with the corresponding quantity for the
eigenvalues of a suitable ensemble of random
matrices (Bohigas, Giannoni, and Schmit, 1984).
Remarkably, a related distribution is observed for
the zeros of Riemann’s zeta function.

Not a single instance of these conjectures is
known, in fact there are counterexamples, but
the conjectures are expected to hold “generically”,
that is unless we have a good reason to think oth-
erwise. A counterexample in the integrable case
is the square billiard, where due to multiplici-

ties in the spectrum, P(s) collapses to a point
mass at the origin. Deviations are also seen in the
chaotic case in arithmetic examples. Nonetheless,
empirical studies offer tantalizing evidence for
the “generic” truth of the conjectures, as Figures
3 and 4 show.

Some progress on the Berry-Tabor conjecture in
the case of the rectangle billiard has been achieved
by Sarnak, by Eskin, Margulis, and Mozes, and by
Marklof. However, we are still far from the goal
even there. For instance, an implication of the
conjecture is that there should be arbitrarily large
gaps in the spectrum. Can you prove this for
rectangles with aspect ratio 4

√
5?

The behavior of P(s) is governed by the statis-
tics of the number N(λ, L) of levels in windows
whose location λ is chosen at random, and whose
length L is of the order of the mean spacing
between levels. Statistics for larger windows also
offer information about the classical dynamics and
are often easier to study. An important example
is the variance of N(λ, L), whose growth rate is
believed to distinguish integrability from chaos [1]
(in “generic” cases; there are arithmetic counterex-
amples). Another example is the value distribution
ofN(λ, L), normalized to have mean zero and vari-
ance unity. It is believed that in the chaotic case
the distribution is Gaussian. In the integrable case
it has radically different behavior: For large L, it
is a system-dependent, non-Gaussian distribution
[2]. For smaller L, less is understood: In the case
of the rectangle billiard, the distribution becomes
Gaussian, as was proved recently by Hughes and
Rudnick, and by Wigman.

Further Reading
[1] M. V. Berry, Quantum chaology (The Bakerian
Lecture), Proc. R. Soc. A 413 (1987), 183-198.

[2] P. Bleher, Trace formula for quantum integrable
systems, lattice-point problem, and small divisors, in
Emerging applications of number theory (Minneapolis,
MN, 1996), 1–38, IMA Vol. Math. Appl., 109, Springer,
New York, 1999.

[3] J. Marklof, Arithmetic Quantum Chaos, and
S. Zelditch, Quantum ergodicity and mixing of eigen-
functions, in Encyclopedia of mathematical physics,
Vol. 1, edited by J.-P. Françoise, G. L. Naber, and T. S.
Tsun, Academic Press/Elsevier Science, Oxford, 2006.
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Figure 3. (Left panel) Distribution of 250,000 single-particle energy level spacings in a rectangular two-
dimensional box with sides a and b such that a/b = 4

p
5 and ab = 4⇡. (Right panel) Distribution of 50,000

single-particle energy level spacings in a chaotic cavity consisting of two arcs and two line segments (see inset).
The solid lines show the Poisson (left panel) and the GOE (right panel) distributions. From Ref. [80].

that the corresponding classical system has only two degrees of freedoms [recall that in
the argument used to justify the Berry-Tabor conjecture, Eqs. (21)–(23), we relied on
having many degrees of freedom]. The right panel depicts a level distribution that is in
perfect agreement with the GOE, in accordance with the BGS conjecture.
Hydrogen atom in a magnetic field - A demonstration of a crossover between Pois-
son statistics and Wigner-Dyson statistics can be seen in another single-particle system
– a hydrogen atom in a magnetic field. The latter breaks the rotational symmetry of the
Coulomb potential and hence there is no conservation of the total angular momentum. As
a result, the classical system has coexistence of regions with both regular (occurring at
lower energies) and chaotic (occurring at higher energies) motion [98]. Results of numeri-
cal simulations (see Fig. 4) show a clear interpolation between Poisson and Wigner-Dyson

level statistics as the dimensionless energy (denoted by Ê) increases [95]. Note that at
intermediate energies the statistics is neither Poissonian nor Wigner-Dyson, suggesting

Figure 4. The level spacing distribution of a hydrogen atom in a magnetic field. Di↵erent plots correspond to
di↵erent mean dimensionless energies Ê, measured in natural energy units proportional to B2/3, where B is the
magnetic field. As the energy increases one observes a crossover between Poisson and Wigner-Dyson statistics.
The numerical results are fitted to a Brody distribution (solid lines) [87], and to a semi-classical formula due to
Berry and Robnik (dashed lines) [97]. From Ref. [95].
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Comparision to RMT spectral form factors

RMT (No time reversal symmetry):

KCUE(t) = t, t < N .
RMT (With time teversal symmetry):

KCOE(t) = 2t − log(1 + 2t/N ), t < N.

Random (uncorrelated, Poissonian) spectrum {ϕn}:
KPoisson ≡ N .

Real System:
Real System:

KCOE(t) = 2t � t ln(1 + 2t/N ) 0 < t < N

KCUE(t) = t

RMT spectral form factors:

Time reversal symmetry

No Time reversal symmetry

0 < t < N = ⌧H

⌧H Heisenberg Time

⌧T Thouless Time

Review: Chen and Ludwig 2017

⌧H

⌧T non universal effectst < ⌧T

Inverse average 
Level Spacing/

plateaut > ⌧H

Eh [K(t)] = Eh

hP
m,n ei('m�'n)t

i

Eh [K(t)]

E[K(t)] = E

[∑
m,n

e i(ϕm−ϕn)

]
.

Saturation K̄(t) ∼ N beyond Heisen-
berg time t > tH = N = 1/∆ϕ.

Non-universal (system-specific) be-
haviour below Ehrenfest/Thouless
time t < tT.
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Heuristic proof of QCC for systems with chaotic classical limit ~→ 0

To first order, this is captured by the diagonal approximation (Berry 1985)

K(τ) ∼
τ∑
p

τ∑
p′

Ape
iSp/~A∗p′e

−iSp′/~ ' (2)
τ∑
p

|Ap|2 = (2)t

Tomaž Prosen /w Bertini and Kos, arXiv:1805.00931
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To first order, this is captured by the diagonal approximation (Berry 1985)

K(τ) ∼
τ∑
p

τ∑
p′

Ape
iSp/~A∗p′e

−iSp′/~ ' (2)
τ∑
p

|Ap|2 = (2)t

To second order, the RMT term is reproduced by considering so-called
Sieber-Richter (2001) pairs of orbits

4

Figure 1. Bunch of 72 (pseudo-)orbits differing in two three-encounters and one
two-encounter (a pseudo-orbit is a set of several disjoined orbits; see below).
Different orbits not resolved except in blowups of encounters.

Figure 2. Sieber–Richter pair.

where two stretches of an orbit are close (see figure 2). Full agreement with all coefficients cn

from RMT was established by the present authors in [13, 14].
In none of these works, oscillatory contributions could be obtained (note however

courageous forays by Keating [16] and Bogomolny and Keating [17]), due to the fact that
Gutzwiller’s formula for the level density is divergent. To enforce convergence, one needs to
allow for complex energies with imaginary parts large compared to the mean level spacing,
Im ✏ � 1. Oscillatory terms proportional to e2i✏ then become exponentially small and cannot be
resolved within the conventional semiclassical approach.

In [18], we proposed a way around this difficulty that we here want to elaborate in detail.
The key idea is to represent the correlation function through derivatives of a generating function
involving spectral determinants. Two such representations are available and entail different
semiclassical periodic-orbit expansions. One of them recovers the non-oscillatory part of the
asymptotic expansion (3), essentially in equivalence to [12]–[14]; the other representation
breaks new ground by giving the oscillatory part of (3).

The full random-matrix result also, and in fact most naturally, arises within an alternative
semiclassical approximation scheme proposed by Berry and Keating in [19]. That scheme
constrains the semiclassical periodic-orbit expansion of the spectral determinants det(E � H)
to be real and to converge for real energy argument. Inserted into the generating function
the resulting ‘Riemann–Siegel lookalike formula’ for det(E � H) was shown in [20] to

New Journal of Physics 11 (2009) 103025 (http://www.njp.org/)
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asymptotic expansion (3), essentially in equivalence to [12]–[14]; the other representation
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The full random-matrix result also, and in fact most naturally, arises within an alternative
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Rigorous proof only possible for very specific class of models: Fully connected
incommensurate quantum graphs [Pluhař and Weidenmüller, PRL 2014]
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What about QCC for many-body systems at ‘~ ∼ 1’?
(say for interacting spin 1/2 or fermionic systems)
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What about QCC for many-body systems at ‘~ ∼ 1’?
(say for interacting spin 1/2 or fermionic systems)

H =
L−1∑
j=0

(−Jc†j cj+1 − J ′c†j cj+2 + h.c.+ Vnjnj+1 + V ′njnj+2), nj = c†j cj .
August 2, 2016 Advances in Physics Review
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Figure 5. (a)–(g) Level spacing distribution of spinless fermions in a one-dimensional lattice with Hamiltonian

(40). They are the average over the level spacing distributions of all k-sectors (see text) with no additional
symmetries (see Ref. [69] for details). Results are reported for L = 24, N = L/3, J = V = 1 (unit of energy), and

J 0 = V 0 (shown in the panels) vs the normalized level spacing !. The smooth continuous lines are the Poisson

and Wigner-Dyson (GOE) distributions. (h) Position of the maximum of P (!), denoted as !max, vs J 0 = V 0, for

three lattice sizes. The horizontal dashed line is the GOE prediction. Adapted from Ref. [69].

spacing statistics becomes indistinguishable of the RMT prediction at smaller values of
the integrability breaking parameters. This suggests that, at least for this class of mod-
els, an infinitesimal integrability breaking perturbation is su�cient to generate quantum
chaos in the thermodynamic limit. Recent numerical studies have attempted to quantify
how the strength of the integrability breaking terms should scale with the system size
for the GOE predictions to hold in one dimension [105, 106]. These works suggest that
the strength needs to be / L�3 for this to happen, but the origin of such a scaling
is not understood. Moreover, it is unclear how generic these results are. In particular,
in disordered systems that exhibit many-body localization, it has been argued that the
transition from the Poisson to the Wigner-Dyson statistics occurs at a finite value of the
interaction strength. This corresponds to a finite threshold of the integrability breaking
perturbation even in the thermodynamic limit (see Ref. [51] and references therein).

3.2. The Structure of Many-Body Eigenstates

As we discussed in Sec. 2, RMT makes important predictions about the random nature of
eigenstates in chaotic systems. According to Eq. (12), any eigenvector of a matrix belong-
ing to random matrix ensembles is a random unit vector, meaning that each eigenvectors
is evenly distributed over all basis states. However, as we show here, in real systems the
eigenstates have more structure. As a measure of delocalization of the eigenstates over a
given fixed basis one can use the information entropy:

Sm ⌘ �
X

i

|ci
m|2 ln |ci

m|2, (41)

where

|mi =
X

i

ci
m|ii (42)

is the expansion of the eigenstate |mi over some fixed basis |ii. For the GOE, this entropy,
irrespective of the choice of basis, should be SGOE = ln(0.48D) + O(1/D) [93], where
D is the dimensionality of the Hilbert space. However, numerical analyses of various

21

From [Rigol and Santos, 2010]
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Detailed numerical study in Kicked Ising Model
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Only very recently first analytic results arrived..

Floquet long-ranged (non-integrable/non-mean field) spin 1/2 chains
[arXiv:1712.02665]

 

Many-Body Quantum Chaos: Analytic Connection to Random Matrix Theory
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A key goal of quantum chaos is to establish a relationship between widely observed universal spectral
fluctuations of clean quantum systems and random matrix theory (RMT). Most prominent features of such
RMT behavior with respect to a random spectrum, both encompassed in the spectral pair correlation
function, are statistical suppression of small level spacings (correlation hole) and enhanced stiffness of the
spectrum at large spectral ranges. For single-particle systems with fully chaotic classical counterparts, the
problem has been partly solved by Berry [Proc. R. Soc. A 400, 229 (1985)] within the so-called diagonal
approximation of semiclassical periodic-orbit sums, while the derivation of the full RMT spectral form
factor KðtÞ (Fourier transform of the spectral pair correlation function) from semiclassics has been
completed by Müller et al. [Phys. Rev. Lett. 93 , 014103 (2004)]. In recent years, the questions of long-time
dynamics at high energies, for which the full many-body energy spectrum becomes relevant, are coming to
the forefront even for simple many-body quantum systems, such as locally interacting spin chains. Such
systems display two universal types of behaviour which are termed the “many-body localized phase” and
“ergodic phase.” In the ergodic phase, the spectral fluctuations are excellently described by RMT, even for
very simple interactions and in the absence of any external source of disorder. Here we provide a clear
theoretical explanation for these observations. We compute KðtÞ in the leading two orders in t and show its
agreement with RMT for nonintegrable, time-reversal invariant many-body systems without classical
counterparts, a generic example of which are Ising spin-1=2 models in a periodically kicking transverse
field. In particular, we relate KðtÞ to partition functions of a class of twisted classical Ising models on a ring
of size t; hence, the leading-order RMT behavior KðtÞ ≃ 2t is a consequence of translation and reflection
symmetry of the Ising partition function.

DOI: 10.1103/PhysRevX.8.021062 Subject Areas: Quantum Physics, Statistical Physics,
Strongly Correlated Materials

I. INTRODUCTION

Random matrix theory (RMT) was introduced into
physics in the 1950s by Wigner [1] to provide a statistical
description of nuclear resonance or excitation spectra. It
should be intuitively clear that a system consisting of a few
tens of nucleons coupled via short- and long-range inter-
actions is complicated enough that a successful description
of experimental spectral fluctuations in terms of an ensem-
ble of random Hamiltonians with independent stochastic
matrix elements is not that surprising. An example of a
robust phenomenological measure of fluctuations is the
statistical variance of the number of energy levels in an

interval of fixed length ΔE which, in RMT and exper-
imental nuclear spectra [2], grows as ∼ log jρ̄ΔEj (known
as spectral stiffness), rather than ∼

ffiffiffiffiffiffiffiffiffiffi
ρ̄ΔE

p
as in the

Poissonian random spectrum (ρ̄ is the average density of
states). The atomic spectra observed already by 1960
exhibited the so-called “level repulsion,” which can be
quantitatively explained [3] with Wigner’s RMT. However,
in the early 1980s a much more surprising fact was
revealed, namely, that RMT also works extremely well
for capturing spectral fluctuations of simple single-particle
systems whose corresponding classical dynamics are com-
pletely chaotic, such as dispersive (Sinai) billiards or
hydrogen or Rydberg atoms in external magnetic or micro-
wave fields. These observations [4–6], termed the quantum
chaos conjecture, which has been concisely stated in
Ref. [7], have driven the field of quantum chaos for
decades. The first, partial explanation for the success of
RMT in simple chaotic systems came from Berry’s semi-
classical (small effective ℏ) calculation [8] of the spectral
form factor KðtÞ in terms of a double sum over classical
unstable periodic orbits, which we explain below. KðtÞ is
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Floqeut local quantum circuits with random unitary gates in the limit of large
local Hilbert space dimension q →∞
[arXiv:1712.06836,arXiv:1803.03841]

Floquet long-ranged (non-integrable) spin chains

Floquet local quantum circuits with random unitary gates and local Hilbert 
space dimension q.

Very recent analytical results!
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What about fermionic or spin 1/2 systems with strictly local interactions?
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Kicked Ising model [TP, JPA 1998; PTPS 2000; PRE 2002]

HKI[h; t] = HI[h] + δp(t)HK, HI[h] ≡
L∑

j=1

{
Jσz

j σ
z
j+1 + hjσ

z
j

}
, HK ≡ b

L∑
j=1

σx
j ,

with Floquet propagator
UKI = e−iHKe−iHI .

J, b: homogeneous spin-coupling and transverse field
hj position dependent longitudinal field
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Kicked Ising model [TP, JPA 1998; PTPS 2000; PRE 2002]

HKI[h; t] = HI[h] + δp(t)HK, HI[h] ≡
L∑

j=1

{
Jσz

j σ
z
j+1 + hjσ

z
j

}
, HK ≡ b

L∑
j=1

σx
j ,

with Floquet propagator
UKI = e−iHKe−iHI .

J, b: homogeneous spin-coupling and transverse field
hj position dependent longitudinal field

Remarks:

KI model is integrable if b = 0 or hj ≡ 0.

For generic hj and b 6= 0, the model has no symmetries.

The clean model hj ≡ h, for J ∼ b ∼ h ∼ 1 appears to be ergodic and its
spectral statistics well described by RMT

The clean model appears to display non-trivial non-ergodicity – ergodicity
transition when h is varied [TP PRE 2002, TP JPA 2002, TP JPA 2007,
see also Vajna, Klobas, TP, Polkovnikov, PRL 120, 200607
(2018)]
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Decay of time correlations in clean KI chain

Three typical cases of parameters:

(a) J = 1, b = 1.4, h = 0.0
(completely integrable).

(b) J = 1, b = 1.4, h = 0.4
(intermediate).

(c) J = 1, b = 1.4, h = 1.4
("quantum chaotic").
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Quantum Ruelle-like resonances

TP, J. Phys. A 35, L737 (2002)

T̂A = [U†AU]r
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The disorder averaging

HKI[h; t] = HI[h] + δp(t)HK, HI[h] ≡
L∑

j=1

{
Jσz

j σ
z
j+1 + hjσ

z
j

}
, HK ≡ b

L∑
j=1

σx
j ,
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The disorder averaging

HKI[h; t] = HI[h] + δp(t)HK, HI[h] ≡
L∑

j=1

{
Jσz

j σ
z
j+1 + hjσ

z
j

}
, HK ≡ b

L∑
j=1

σx
j ,

Consider longitudinal magnetic field hj to be i.i.d. (Gaussian) variable with
mean h̄ and standard deviation σ

K̄(t) = Eh[K(t)] =

∫ ∞
−∞

(
L∏

j=1

dhj√
2πσ

exp

(
− (hj − h̄)2

2σ2

))
K(t).

For |J| = |b| = π/4 and σ large
enough the behaviour seems im-
mediately RMT-like (tT ∼ 1)

Interpreting K̄(t) in terms of a
partition function of 2d classical
statistical model, we can study
SFF analytically in thermody-
namic limit!
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Key result: Exact SFF in thermodynamic limit

Theorem: For odd t:

lim
L→∞

K̄(t) =

{
2t − 1 , t ≤ 5
2t , t ≥ 7

.
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Key result: Exact SFF in thermodynamic limit

Theorem: For odd t:

lim
L→∞

K̄(t) =

{
2t − 1 , t ≤ 5
2t , t ≥ 7

.

Conjecture: For even t:

K̄(2) = 2, K̄(4) = 7, K̄(6) = 13, K̄(8) = 18, K̄(10) = 22,

K̄(t) = 2t + 1, t ≥ 12.
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Key result: Exact SFF in thermodynamic limit

Theorem: For odd t:

lim
L→∞

K̄(t) =

{
2t − 1 , t ≤ 5
2t , t ≥ 7

.

Conjecture: For even t:

K̄(2) = 2, K̄(4) = 7, K̄(6) = 13, K̄(8) = 18, K̄(10) = 22,

K̄(t) = 2t + 1, t ≥ 12.

Remarks:

Results independent of σ > 0: The model is ergodic for any disorder
strength (no Floquet-MBL!). In particular, we can take the limit of a
clean system at the end σ ↘ 0.

Results independent of h̄: We can set h̄ = 0 which corresponds to a
limiting integrable system.
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Key result: Exact SFF in thermodynamic limit

Theorem: For odd t:

lim
L→∞

K̄(t) =

{
2t − 1 , t ≤ 5
2t , t ≥ 7

.

Conjecture: For even t:

K̄(2) = 2, K̄(4) = 7, K̄(6) = 13, K̄(8) = 18, K̄(10) = 22,

K̄(t) = 2t + 1, t ≥ 12.

Remarks:

Results independent of σ > 0: The model is ergodic for any disorder
strength (no Floquet-MBL!). In particular, we can take the limit of a
clean system at the end σ ↘ 0.

Results independent of h̄: We can set h̄ = 0 which corresponds to a
limiting integrable system.

We found a simple locally interacting model with finite dimensional local Hilbert
space with proven RMT spectral correlations at all time-scales!
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Sketch of the proof. Space-time duality

The trace of U t
KI is equivalent to a partition sum of a classical 2d Ising model

with row-homogeneous field hj :The trace is equivalent to the partition function of a classical Ising model in 2d

UKI[h]

ŨKI[h
z
3✏]

tr (U t
KI[h]) ⇠

Natural Duality Relation

tr (U t
KI[h]) = tr

⇣QL
j=1 ŨKI[hj✏]

⌘

unitary for |J | = |b| = ⇡
4ŨKI[hj✏]

Duality

Duality relation

tr (UKI[h])t = tr

(
L∏

j=1

ŨKI[hjε]

)

where ε = (1, 1 . . . , 1) and ŨKI is a KI model on a ring of size t with twisted
parameters J̃(J, b), b̃(J, b).
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Sketch of the proof. Space-time duality

The trace of U t
KI is equivalent to a partition sum of a classical 2d Ising model

with row-homogeneous field hj :The trace is equivalent to the partition function of a classical Ising model in 2d

UKI[h]

ŨKI[h
z
3✏]

tr (U t
KI[h]) ⇠

Natural Duality Relation

tr (U t
KI[h]) = tr

⇣QL
j=1 ŨKI[hj✏]

⌘

unitary for |J | = |b| = ⇡
4ŨKI[hj✏]

Duality

Duality relation

tr (UKI[h])t = tr

(
L∏

j=1

ŨKI[hjε]

)

where ε = (1, 1 . . . , 1) and ŨKI is a KI model on a ring of size t with twisted
parameters J̃(J, b), b̃(J, b).

Remarkably: ŨKI is unitary for |J| = |b| = π/4 (Self-dual, J = ±J̃, b = ±b̃)
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Space-time duality allows to simply express the disorder averaging:Duality allows to simply express the  disorder averaging

⌘ T

Eh [K(t)]

⌘

tr
�
TL

�=

T ⌘ Eh

h
ŨKI[h✏] ⌦ ŨKI[h✏]

⇤
i

= (ŨKI ⌦ Ũ⇤
KI) · O�

O� = exp
h
� 1

2�
2 (Mz ⌦ I � I ⌦ Mz)

2
i

Contraction

Non-Unitary

Unitary

Duality
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Space-time duality allows to simply express the disorder averaging:Duality allows to simply express the  disorder averaging

⌘ T

Eh [K(t)]

⌘

tr
�
TL

�=

T ⌘ Eh

h
ŨKI[h✏] ⌦ ŨKI[h✏]

⇤
i

= (ŨKI ⌦ Ũ⇤
KI) · O�

O� = exp
h
� 1

2�
2 (Mz ⌦ I � I ⌦ Mz)

2
i

Contraction

Non-Unitary

Unitary

Duality

Computation of thermodynamic SFF limL→∞ TL thus amounts to determining
the multiplicity of eigenvalue 1 of T and proving positive spectral gap.
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Empirical convergence of the spectral gap
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Unimodular eigenvalues of T

The following is straightforward to show:

Property 1
1 The eigenvalues of T of maximal (unit) magnitude are either +1 or −1.
2 Each eigenvector associated to the eigenvalue ±1 is uniquely

paramertrized by an operator A ∈ End((C2)⊗t) satisfying

UAU† = ±A, [A,Mα] = 0, α ∈ {x , y , z}. (1)

where we have defined Mα =
∑t
τ=1 σ

α
τ , U = exp

[
i π4
∑t
τ=1(σz

τσ
z
τ+1 − 1)

]
.

U is the parity of half-number of domain walls in the spin configuration,
U2 = 1.
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Unimodular eigenvalues of T

The following is straightforward to show:

Property 1
1 The eigenvalues of T of maximal (unit) magnitude are either +1 or −1.
2 Each eigenvector associated to the eigenvalue ±1 is uniquely

paramertrized by an operator A ∈ End((C2)⊗t) satisfying

UAU† = ±A, [A,Mα] = 0, α ∈ {x , y , z}. (1)

where we have defined Mα =
∑t
τ=1 σ

α
τ , U = exp

[
i π4
∑t
τ=1(σz

τσ
z
τ+1 − 1)

]
.

U is the parity of half-number of domain walls in the spin configuration,
U2 = 1.

Observation: The operators U,Mα are translationally invariant and reflection
symmetric ⇒ All elements of Dt = {ΠnRm, n ∈ {0, 1, . . . , t − 1},m ∈ {0, 1}}
fullfil (1) with +1, where

Π =
t−1∏
τ=1

Pτ,τ+1, R =

bt/2c∏
τ=1

Pτ,t+1−τ

are translation and reflection on a spin ring of length t.
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Property 2

The number of linearly independent elements of Dt is 2t for t ≥ 6, 2t − 1 for
t ∈ {1, 3, 4, 5}, and 2 for t = 2.

Tomaž Prosen /w Bertini and Kos, arXiv:1805.00931



Property 2

The number of linearly independent elements of Dt is 2t for t ≥ 6, 2t − 1 for
t ∈ {1, 3, 4, 5}, and 2 for t = 2.

Property 3

For odd t, Eq. (1) can be fulfilled only for eigenvalue +1.
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Property 2

The number of linearly independent elements of Dt is 2t for t ≥ 6, 2t − 1 for
t ∈ {1, 3, 4, 5}, and 2 for t = 2.

Property 3

For odd t, Eq. (1) can be fulfilled only for eigenvalue +1.

Theorem

For odd t, all A satisfying (1) are given by linear combination of elements of Dt .
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Property 2

The number of linearly independent elements of Dt is 2t for t ≥ 6, 2t − 1 for
t ∈ {1, 3, 4, 5}, and 2 for t = 2.

Property 3

For odd t, Eq. (1) can be fulfilled only for eigenvalue +1.

Theorem

For odd t, all A satisfying (1) are given by linear combination of elements of Dt .

Observation: For even t, we find generically exactly one additional operator A
satisfying Eq. (1). For special values of t ≤ 10 we find an extra additional
operator, and also solutions of Eq. (1) for eigenvalue −1. 4

state |Ai and we can rewrite the conditions (16) as follows

[A, Mz] = 0 ŨKIAŨ†
KI = ei�A . (18)

After some simple manipulations [34] we find

Property 2. The relations (18) are equivalent to

UAU† = ei�A , [A, M↵] = 0 , ↵ 2 {x, y, z} , (19)

where we defined a unitary operator

U = exp

"
i
⇡

4

tX

⌧=1

�
�z
⌧�

z
⌧+1 �

�
#

. (20)

U is diagonal in the canonical basis |si and gives the par-
ity of half-number of domain walls in the periodic t�spin
configuration s; the property U2 = implies � 2 {0,⇡}.
Namely, the unimodular eigenvalues of T are either 1 or
�1. By exact numerical diagonalization of T we find that
the eigenvalues �1 are much rarer than +1 and are ob-
served only for small systems, see Tab. I. In particular, for
odd t we have the following additional symplification [34]

Property 3. � = 0 for odd t.

For odd t the problem of computing K̄(t) is then
turned into that of finding all linearly independent ma-
trices A commuting with the set M = {U, Mx, My, Mz}.
A subset of all possible operators commuting with M is
found by considering the common symmetries: reflection
R and one-site shift ⇧ on a periodic chain of t sites

⇧ =
t�1Y

⌧=1

P⌧,⌧+1 R =

bt/2cY

⌧=1

P⌧,t+1�⌧ . (21)

Here P⌧,! = 1
2 + 1

2

P
↵ �

↵
⌧ �

↵
! is the elementary permuta-

tion operator (transposition). These operators generate
the so called dihedral group (see, e.g., [36])

Gt = {⇧nRm; n 2 {0, . . . , t � 1}, m 2 {0, 1}} , (22)

which is the symmetry group of a polygon with t vertices.
All elements of Gt commute with M and we have [34]

Property 4. The number of linearly independent ele-
ments of Gt is 2t for t � 6, 2t� 1 for t 2 {1, 3, 4, 5}, and
2 for t = 2.

We thus have a lower bound on the number of indepen-
dent matrices A fulfilling (19) and hence on the value of
the averaged SFF for odd t. Our main result is to show
that such lower bound is also an upper bound, namely

Theorem 1. For odd t, any A simultaneously commut-
ing with all elements of {U, Mx, My, Mz}, is of the form

A =

t�1X

n=0

1X

m=0

an,m⇧nRm , an,m 2 C . (23)

t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#+1 2 5 7 9 13 14 18 18 22 22 25 26 29 30 33 34
#�1 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0

TABLE I. Number of eigenvalues 1 and �1 of the transfer
matrix T determined via exact diagonalization for t  17.

See [34] for a proof. As the number of such linearly in-
dependent A is the multiplicity of eigenvalue 1 of T, and
since there is a finite gap between unit circle and the rest
of the spectrum, we have

lim
L!1

K̄(t) =

(
2t � 1 , t  5

2t , t � 7
, t odd . (24)

For even t the situation is more complicated. In this
case, we identify an additional independent operator be-
sides Gt spanning the commutant of M. This operator
can be written as a projector | ih |, where we introduced
a t�spin singlet state

| i =
1

2t

t/2Y

⌧=1

�
1 � P⌧,⌧+t/2

�
|#, . . . , #| {z }

t/2

, ", . . . , "| {z }
t/2

i , (25)

satisfying U | i = � | i, Mx,y,z | i = 0, ⇧ | i = � | i,
R | i = (�1)t/2 | i. Moreover, for t 2 {8, 10} we iden-
tify the second additional operator commuting with the
set M [34]. Finally, for t 2 {6, 10} we construct two op-
erators satisfying (19) with eigenphase � = ⇡ [34]. All
these additional operators, except (25), appear to be a
short-time fluke and are observed only for t smaller than
11. We are then lead to conjecture

lim
L!1

K̄(t) = 2t + 1 , t > 11 , t even . (26)

This conjecture, together with the exact result (24), is in
agreement with exact diagonalization of T on chains of
length t  17, see Tab. I.

The results (24) and (26) are remarkable: we fully re-
covered 2-point RMT spectral fluctuations (in the ther-
modynamic limit) in a simple non-integrable spin-1/2
chain with local interactions. A key step of our calcu-
lation was to average over the distribution of indepen-
dent longitudinal fields h. This average introduces a fi-
nite gap in the spectrum of the transfer matrix T and
selects the 2t “universal” eigenvalues out of the exponen-
tialy many eigenvalues of T. Note that any nonvanishing
� is sufficient for this astonishing simplification to occur.
Moreover, after the thermodynamic limit is taken there
is no additional dependence of the result on the disorder
variance �2, we can then consider the limit � ! 0 corre-
sponding to a clean system. Finally, our result does not
depend on the particular distribution of the longitudinal
fields, as long as they are i.i.d.; a different choice mod-
ifies the form of (14) but not the thermodynamic-limit
result. To get a quantitative estimate of the expected
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Conclusions

The first exact result on ergodicity in terms of spectral correlations for an
interacting quantum many-body problem

Self-dual instances of Kicked Ising chain provide a minimal model of
quantum many-body chaos with no intrinsic time scales
(Thouless time = 1)

Pending open problems and promising future directions:
1 Complete the picture by rigorous analysis of the even t case.
2 Structural stability of the self-dual point: Perturbation theory may have a

finite radius of convergence?
3 Potentially accessible ergodicity – MBL transition from the ergodic side?
4 Computing dynamics of entanglement entropy via space-time duality.
5 Path to a rigorous approach to ETH?
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