

Operator Spreading and the Emergence of Dissipation in Unitary Dynamics with Conservation Laws

Vedika Khemani

VK Vishwanath Huse 2017 VK Huse Nahum 2018

Unitary Quantum Dynamics

Dynamics of isolated, MB systems undergoing

spins/cold atom molecules/ black holes/...

strongly interacting, excited (no quasiparticles)

Time-independent Hamiltonian:

$$U(t) = e^{-iHt}$$

Floquet:

Random unitary circuit:

Thermalization in Isolation

Q: Can an isolated MB system act as it's own "bath" and bring its subsystems to thermal equilibrium (maximum entanglement)?

Full system remembers all details $|\psi(0)\rangle \longrightarrow |\psi(t)\rangle = e^{-iHt}|\psi(0)\rangle$

Subsystems can thermalize

$$\rho_A(t) = \mathrm{Tr}_B |\psi(t)\rangle \langle \psi(t)|$$

Maximum entropy subject to a few constraints

$$\lim_{t \to \infty} \rho_A(t) = \operatorname{Tr}_B \rho_{\text{eq}}(T, \mu, \cdots)$$

Can reversible unitary time evolution bring a system to thermal equilibrium at late times?

 $|\psi(t)\rangle = U(t)|\psi_0\rangle$

Yes: **Thermalizing**

Act as their "own bath" and bring subsystems to thermal equilibrium (maximum entropy)

$$\rho_A(t) = \operatorname{Tr}_B |\psi(t)\rangle \langle \psi(t)|$$
$$\lim_{t \to \infty} \rho_A(t) = \operatorname{Tr}_B \rho_{\text{eq}}(T, \mu, \cdots)$$

No: **Many-Body Localized**

Cannot act as their own bath. Retain *local* memory forever.

 $t \rightarrow$

Thermalization + Conservation Law

Chaotic many-body system (ballistic information spreading) +

locally conserved diffusive densities (energy/charge/..)

Unitarity vs. Dissipation

Chaotic many-body system (ballistic information spreading) + locally conserved diffusive densities (energy/charge/..)

Q: How does unitary quantum dynamics, which is reversible, give rise to diffusive hydrodynamics, which is dissipative (increases entropy)?

Unitary Dynamics: Reversible

Diffusion: Irreversible/Dissipation

Many-Body "Quantum Chaos"

What is a precise formulation for many-body quantum chaos?

Is there a useful definition for chaos that is distinct from thermalization?

Are there distinct (universal) signatures of chaos at early/intermediate/late times? What are the most appropriate observables for probing these regimes?

Operator Spreading & OTOC

$$W(t) = U^{\dagger}(t)W_{0}U(t)$$
$$\mathcal{C}(x,t) = \frac{1}{2} \langle |[W(t), V_{x}]|^{2} \rangle$$

"Out-of-time-ordered-commutator"

semi-classical analog:

$$|i\hbar\{q(t),p\}|^2 = \hbar^2 \left(\frac{\partial q(t)}{\partial q(0)}\right)^2$$
$$\sim \hbar^2 e^{\lambda t}$$

for classically chaotic systems with exponential sensitivity to initial conditions

Three aspects of dynamics

- Butterfly effect: ballistic operator growth with butterfly velocity v_{B}
- Diffusive hydrodynamics of conserved charges
- Lyapunov regime: exponential early-time sensitivity to perturbations

Local Hilbert space dimension: 2 (can also consider qudits with q)

4 operators per site: σ_i^{μ} $\mu \in \{0, 1, 2, 3\}$

Orthonormal basis of operators: (4)^L "Pauli strings"

 $xIyz, IzII, xxxx \cdots$

$$S = \prod_{i} \otimes \sigma_{i}^{\mu_{i}}$$
$$\mathrm{Tr}[S^{\dagger}S']/(2^{L}) = \delta_{SS'}$$

z component of spin 1/2 qubits conserved

Setup: Random Conserving Circuit Model

VK Vishwanath Huse (2017)

Builds on: Nahum et. al., (2016, 2017), von Keyserlingk et. al (2017).

Operator Spreading

Operator Spreading: unitarity

Unitarity preserves operator norm

 $\operatorname{Tr}[O_0^{\dagger}(t)O_0(t)] = \operatorname{Tr}[O_0^{\dagger}O_0] = 2^L$ $\sum_{\mathcal{O}} |a_{\mathcal{S}}(t)|^2 = 1$ S

$$O(t) = \sum_{S} a_{S}(t)S$$
$$\mathrm{Tr}[S^{\dagger}S']/(2^{L}) = \delta_{SS'}$$

Operator Spreading: conservation law

Separate operator into conserved and non-conserved pieces

$$O_0(t) = O_0^c(t) + O_0^{\rm nc}(t)$$
$$O_0^c(t) = \sum_i a_i^c(t) z_i$$

$$O(t) = \sum_{S} a_{S}(t)S$$
$$\mathrm{Tr}[S^{\dagger}S']/(2^{L}) = \delta_{SS'}$$

Operator Spreading: conservation law

Separate operator into conserved and non-conserved pieces

$$O_0(t) = O_0^c(t) + O_0^{\rm nc}(t) \xrightarrow{\exp(\mathsf{L}) \text{ mostly non-local strings, thus "hidden"}} O_0^c(t) = \sum_i a_i^c(t) z_i$$

L local operator "strings", conserved densities

$$O(t) = \sum_{S} a_{S}(t)S$$
$$\mathrm{Tr}[S^{\dagger}S']/(2^{L}) = \delta_{SS'}$$

Operator Spreading: conservation law

Separate operator into conserved and non-conserved pieces

$$O_0(t) = O_0^c(t) + O_0^{\rm nc}(t) \xrightarrow{\exp(\mathsf{L}) \operatorname{mostly non-local}}_{\operatorname{strings, thus "hidden"}}$$
$$O_0^c(t) = \sum_i a_i^c(t) z_i$$
$$\operatorname{L \ local \ operator "strings", conserved \ densities}$$

 $\operatorname{Tr}[O_0(t)S_z^{\operatorname{tot}}] = \operatorname{constant} \implies$

 $\sum_{i=1}^{L} a_i^c(t) = \text{constant}$

 $O(t) = \sum_{S} a_{\mathcal{S}}(t) \mathcal{S}$ $\mathrm{Tr}[S^{\dagger}S']/(2^{L}) = \delta_{SS'}$

Operator Spreading

Operator dynamics governed by the interplay between:

Unitarity: $\sum_{\mathcal{S}} |a_{\mathcal{S}}(t)|^2 = 1$ Conservation law: $\sum_{i=1}^{L} a_i^c(t) = ext{constant}$

First: unconstrained circuit

 $\sum_{\mathcal{S}} |a_{\mathcal{S}}(t)|^2 = 1$

Operator shape: Right weight

Right-Weight: "emergent" density following from unitarity

$$\rho_R(i,t) = \sum |a_{\mathcal{S}}|^2,$$

strings S with rightmost nonidentity on site i

$$\sum_i
ho_R(i,t) = 1.$$

Each string has right/left edges beyond which it is purely identity.

ρ looks at the density distribution of the "right front" of the operator.

As operator spreads, weight moves to longer Pauli strings.

Example, only 3/15 non-identity two-site spin 1/2 operators have identity on the right site.

Probability: 12/15

Probability: 3/15

Front dynamics: biased random-walk

Emergent hydrodynamics:

$$\partial_t \rho_R(x,t) = v_B \partial_x \rho_R(x,t) + D_\rho \partial_x^2 \rho_R(x,t)$$

$$\rho_R(x,t) \approx \frac{1}{\sqrt{4\pi D_\rho t}} e^{-\frac{(x-v_B t)^2}{4D_\rho t}}$$

$$v_B \sim 1 - \frac{2}{q^2}; \ D_\rho \sim \frac{2}{q^2}$$

Figure from: von Keyserlingk et. al (2017)

Setup: Random Conserving Circuit Model

Operator Spreading

Operator dynamics governed by the interplay between:

Unitarity: $\sum_{\mathcal{S}} |a_{\mathcal{S}}(t)|^2 = 1$ Conservation law: $\sum_{i=1}^{L} a_i^c(t) = ext{constant}$

Spreading of conserved charges

First, consider spreading of conserved density

$$O_0 = z_0$$
$$a_i^c(t=0) = \delta_{i0}$$
$$\sum_i a_i^c(t) = 1$$

Diffusion & conserved amplitudes: intuition

Initial state: Infinite temperature equilibrium + local charge perturbation

$$\rho_0 = \frac{1}{2^L} [\mathbb{I} + \epsilon O_0]$$
$$O_0 = z_0$$

Diffusion & conserved amplitudes: intuition

Initial state: Infinite temperature equilibrium + local charge perturbation

$$\rho_0 = \frac{1}{2^L} [\mathbb{I} + \epsilon O_0]$$
$$O_0 = z_0$$

Diffusive charge spreading (coarse grained):

$$\begin{aligned} \langle z \rangle(x,t) &= \operatorname{Tr}[\rho(t)z_x] \\ &= \frac{\epsilon}{2^L} \operatorname{Tr}[\rho(t)z_x] \\ &= \epsilon \ a_x^c(t) \sim \frac{1}{\sqrt{t}} e^{-\frac{x^2}{4D_c t}} \end{aligned}$$

 a_x^c

t = 0

 \mathcal{T}

Diffusion & conserved amplitudes

$$O_0 = z_0$$

Random conserving circuit model

$$\overline{a_i^c(t)} = \frac{1}{2^t} \begin{pmatrix} t-1\\ \lfloor \frac{i+t-1}{2} \rfloor \end{pmatrix} \qquad \sum_i a_i^c(t) = 1$$

$$\overline{a^{c}(x,t)} \approx \sqrt{\frac{1}{2\pi t}} e^{-\frac{x^{2}}{2t}} \qquad \begin{array}{c} \text{coarse grain+} \\ \text{scaling limit} \end{array}$$

 $D_c = \frac{1}{2}$ independent of q

Diffusive Lump

$$\sum_{i} a_i^c(t) = 1$$

Total operator <u>weight</u> in the diffusive lump of conserved charges decreases as a power-law in time.

$$\rho_{\text{tot}}^c \equiv \sum_i |a_i^c(t)|^2$$
$$\overline{\rho_{\text{tot}}^c(t)} \approx \int dx |\overline{a_x^c(t)}|^2 = \int dx \ \frac{1}{2\pi t} e^{-\frac{x^2}{t}} = \frac{1}{2\sqrt{\pi t}}$$

Significant weight in a "diffusive cone" near the origin, even at late times.

Slow emission of non-conserved operators

- No net loss in operator weight (unitarity).
- Conserved parts emit a steady flux of "non-conserved" operators.
- The local production of non-conserved operators is proportional to the square of the diffusion current, as in Ohm's law:

$$\delta \rho_i^{\rm nc}(t) \sim (a_i^c(t) - a_{i+1}^c(t))^2 \sim (\partial_x a^c(x,t))^2$$

Emergence of dissipation

The dissipative process is the **conversion** of operator weight from locally observable conserved parts to non-conserved, non-local (non-observable) parts at a *slow* hydrodynamic rate.

Observable entropy increases, while total von Neumann entropy of the full system is conserved.

Increase in observable entropy

$$\rho(t) = \frac{1}{2^L} [\mathbb{I} + \epsilon O_0(t)] \qquad S_{\rm vn}(t) = \text{const}$$

$$O_0^c(t) = \sum_i a_i^c(t) z_i$$

$$S_{vn}^{c}(t) = -\text{Tr}[\rho^{c}(t)\log\rho^{c}(t)]$$

= $L\log(2) - \frac{1}{2}\sum_{i}|a_{i}^{c}(t)|^{2} + \cdots$

$$\frac{d}{dt}S_{\rm vn}^c(t) \sim \frac{1}{2D_c} \int dx |j_c(x)|^2$$

 Diffusion of conserved densities: Local conserved densities spread diffusively. The weight of O(t) on the conserved parts (which live in a diffusive cone near the origin) slowly decreases as a power-law in time. Thus significant weight near the origin even at late times.

- Diffusion of conserved densities: Local conserved densities spread diffusively. The weight of O(t) on the conserved parts (which live in a diffusive cone near the origin) slowly decreases as a power-law in time. Thus significant weight near the origin even at late times.
- Slow Emission of non-conserved operators: No net loss in operator weight (unitarity). Conserved parts emit a steady flux of "non-conserved" operators. The emission happens at a slow hydrodynamic rate set by the local diffusive currents of the conserved densities.

- Diffusion of conserved densities: Local conserved densities spread diffusively. The weight of O(t) on the conserved parts (which live in a diffusive cone near the origin) slowly decreases as a power-law in time. Thus significant weight near the origin even at late times.
- Slow Emission of non-conserved operators: No net loss in operator weight (unitarity). Conserved parts emit a steady flux of "non-conserved" operators. The emission happens at a slow hydrodynamic rate set by the local diffusive currents of the conserved densities.
- Ballistic spreading of non-conserved operators: Once emitted, the non-conserved parts spread ballistically, quickly becoming non-local and hence non-observable.

- Diffusion of conserved densities: Local conserved densities spread diffusively. The weight of O(t) on the conserved parts (which live in a diffusive cone near the origin) slowly decreases as a power-law in time. Thus significant weight near the origin even at late times.
- Slow Emission of non-conserved operators: No net loss in operator weight (unitarity). Conserved parts emit a steady flux of "non-conserved" operators. The emission happens at a slow hydrodynamic rate set by the local diffusive currents of the conserved densities.
- Ballistic spreading of non-conserved operators: Once emitted, the non-conserved parts spread ballistically, quickly becoming non-local and hence non-observable.
- Diffusive tails behind ballistic front: Slow diffusive modes lead to power-law "tails" behind the leading ballistic front, coming from ``lagging" fronts emitted at later times. Show up in the OTOC.

Operator shape: conserving circuit

Coupled hydrodynamic description

Diffusion of conserved charges

$$\partial_t a^c(\mathbf{x},t) = D_c \nabla^2 a^c(\mathbf{x},t)$$

Biased diffusion of non-conserved fronts emitted from local gradients in the conserved charges

$$egin{aligned} \partial_t
ho_R^{nc}(x,t) &= v_B \partial_x
ho_R^{nc}(x,t) + D_
ho \partial_x^2
ho_R^{nc}(x,t) \ &+ 2D_c |\partial_x a^c(x,t)|^2 \end{aligned}$$

OTOC

OTOC's sensitive to both shape and internal structure

$$\mathcal{C}^{\mu}_{\alpha\beta}(x,t) = \frac{1}{2} \operatorname{Tr} \left\{ \rho^{\mathrm{eq}}_{\mu} | [\sigma^{\alpha}_{0}(t), \sigma^{\beta}_{x}]|^{2} \right\}$$

Consider zero "chemical potential" / "infinite temperature"

OTOC: z(t), r

Existence of a Lyapunov Regime

No simple exponential growth in OTOC

$$C(x_0, t) \sim \exp\left[-\frac{(x_0 - v_B t)^2}{2Dt}\right]$$

- OTOC does show early-time exponential growth in large N/holographic/semiclassical models
- Requires a small parameter ε in the quantum setting (furnished by I/N or a weak scattering rate)

$$C \sim \epsilon \ e^{\lambda t} \qquad t_* = \frac{1}{\lambda} \log \frac{1}{\epsilon}$$

• Spatially local systems potentially have a small parameter because it takes a large time $t_* \sim |x|/v_B$ for a large commutator to build up. Simple exponential regime may still not exist due to front broadening

 $C(\mathbf{x}_0, t) = \langle |[V(0, t), W(\mathbf{x}_0)]|^2 \rangle$

 $C(\mathbf{x},t) \sim e^{\lambda(\mathbf{v})t}$ for $\mathbf{x} = \mathbf{v}t$

OTOC at fixed x_0

OTOC at fixed v

VK, Huse Nahum 2018

Classically, C(x,t) grows or decays in time along rays with a velocity dependent Lyapunov exponent

$$C(x = vt, t) \sim e^{\lambda(v)t}$$

VK, Huse Nahum 2018 Lieb-Robinson 1972, Deissler, Kaneko 1986

Quantum chaos: large N/ semiclassical

Large N/ semiclassical quantum models show exponential regime:

$$C(x,t) \sim \frac{1}{N^2} e^{\lambda_L (t - |x|/v_B)}$$

e.g. SYK chain (Gu, Qi, Stanford 2016), weakly interacting diffusive metals (Patel et. al. 2017, Aleiner et. al 2016)

VK, Huse Nahum 2018

"Strongly quantum chaos"

No exponentially growing regime with positive Lyapunov exponents seems to exist (yet?) for "strongly quantum" manybody chaos.

VK, Huse Nahum 2018

Summary & Outlook

- Operator spreading with diffusive conserved densities governed by multiple coupled diffusive hydrodynamic processes. Distributed over conserved and not conserved operators, with separation of time scales
- Concrete resolution of the fundamental tension between unitarity and dissipation.
- Some Extensions:
 - Understand operator dynamics in other classes of systems? With broken symmetries? Integrable systems?
 - Positive Lyapunov exponents for strongly quantum systems?
 - Entanglement dynamics with conservation laws
 - Connections with Hamiltonian dynamics at finite temperature?
 - Connections with bounds relating D and v_B? Implications for charged black-holes?

$\lambda(v)$ Forms

Also: Aleiner et. al 2016, Patel Sachdev 2017