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Operator Spreading and the 
Emergence of Dissipation in Unitary 
Dynamics with Conservation Laws



Unitary Quantum Dynamics
Dynamics of isolated, MB systems undergoing 
unitary time evolution: 

spins/cold atom molecules/ black holes/… 

strongly interacting, excited (no quasiparticles)

⇢(t+ �t) =

U⇢(t)U†

U(t) = e�iHtTime-independent 
Hamiltonian:

Floquet:

Random 
unitary circuit:

U(t) =

U(nT ) = [U(T )]n



Thermalization in Isolation
Q: Can an isolated MB system act as it’s own “bath” and bring its 

subsystems to thermal equilibrium (maximum entanglement)?  

A B

Maximum entropy subject 
to a few constraints 

Full system remembers all details 

Subsystems can thermalize

lim
t!1

⇢A(t) = TrB⇢eq(T, µ, · · · )



Can reversible unitary time evolution bring a system to 
thermal equilibrium at late times? 

Yes:    Thermalizing
Act as their “own bath” and bring subsystems to thermal 
equilibrium (maximum entropy)

A B

Cannot act as their own bath. 

Retain local memory forever. 

lim
t!1

⇢A(t) = TrB⇢eq(T, µ, · · · )

No:    Many-Body Localized

| (t)i = U(t)| 0i



Thermalization + Conservation Law

Chaotic many-body system (ballistic information spreading)
+ 

locally conserved diffusive densities (energy/charge/..)  

VK Vishwanath Huse (2017)



Unitarity vs. Dissipation

Q: How does unitary quantum dynamics, which is 
reversible, give rise to diffusive hydrodynamics, which is 

dissipative (increases entropy)? 

Unitary Dynamics:    Reversible

Diffusion:    Irreversible/Dissipation 

Chaotic many-body system (ballistic information spreading)
+ 

locally conserved diffusive densities (energy/charge/..)  

VK Vishwanath Huse (2017)



Many-Body “Quantum Chaos”

What is a precise formulation for many-body 
quantum chaos? 

Is there a useful definition for chaos that is distinct 
from thermalization? 

Are there distinct (universal) signatures of chaos at 
early/intermediate/late times? What are the most 

appropriate observables for probing these regimes?
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t

W0

W (t) = U†(t)W0U(t)

C(x, t) = 1

2
h|[W (t), V

x

]|2i

V
x

⇠ 2vBt

“Out-of-time-ordered-commutator”

semi-classical analog:

|i~{q(t), p}|2 = ~2
✓
@q(t)

@q(0)

◆2

⇠ ~2e�t

for classically chaotic systems 
with exponential sensitivity to 

initial conditions

 Operator Spreading & OTOC



Three aspects of dynamics

• Butterfly effect: ballistic operator growth with 
butterfly velocity vB 

• Diffusive hydrodynamics of conserved charges

• Lyapunov regime: exponential early-time 
sensitivity to perturbations



Setup

Local Hilbert space dimension: 2 (can also consider qudits with q)

spin 1/2 qubit

4  operators per site:

L

µ 2 {0, 1, 2, 3}

Orthonormal basis of operators:
(4)L       “Pauli strings” 

�µ
i

S =
Y

i

⌦�µi
i

Tr[S†S0]/(2L) = �SS0
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xIyz, IzII, xxxx · · ·



Setup

spin 1/2
qubit

L

z component of spin 1/2 qubits conserved

[U(t), Stot

z ] = 0

Stot

z =
LX

i

zi
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Setup: Random Conserving Circuit Model

t = 0

t = 1

t = 2

t = 3

t = 4

2i 2i+ 1

U(q2)

##

"#, #"

""
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Builds on: Nahum et. al., (2016, 2017), 
von Keyserlingk et. al (2017). 



Spreading 
constrained by:

Operator Spreading

O(t) = U †(t)O0U(t)

• Unitarity

• Conservation Law(s)

O(t) =
X

S
aS(t)S

x

t

sum over (4)L 
strings



Operator Spreading: unitarity 

Unitarity preserves operator norm 

X

S
|aS(t)|2 = 1

=)

Tr[O†
0(t)O0(t)] = Tr[O†

0O0] = (2q)L

O(t) =
X

S
aS(t)S

Tr[S†S0]/(2L) = �SS0

2L



Operator Spreading: conservation law 

O0(t) = Oc
0(t) +Onc

0 (t)

Separate operator into conserved and non-conserved pieces  

O(t) =
X

S
aS(t)S

Tr[S†S0]/(2L) = �SS0

Oc
0(t) =

X

i

aci (t)zi



Operator Spreading: conservation law 

O0(t) = Oc
0(t) +Onc

0 (t)

Separate operator into conserved and non-conserved pieces  

L local operator “strings”, 
conserved densities

O(t) =
X

S
aS(t)S

exp(L) mostly non-local 
strings, thus “hidden”

Tr[S†S0]/(2L) = �SS0

Oc
0(t) =

X

i

aci (t)zi



Operator Spreading: conservation law 

O0(t) = Oc
0(t) +Onc

0 (t)

Separate operator into conserved and non-conserved pieces  

Tr[O
0

(t)Stot

z ] = constant

L local operator “strings”, 
conserved densities

LX

i=1

aci (t) = constant

=)

O(t) =
X

S
aS(t)S

exp(L) mostly non-local 
strings, thus “hidden”

Tr[S†S0]/(2L) = �SS0

Oc
0(t) =

X

i

aci (t)zi



Operator Spreading

Operator dynamics governed by the interplay between:

X

S
|aS(t)|2 = 1Unitarity:

Conservation law:

LX

i=1

aci (t) = constant
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First: unconstrained circuit

t = 0

t = 1

t = 2

t = 3

t = 4

2i 2i+ 1

Nahum et. al., (2016, 2017), 
von Keyserlingk et. al (2017). 

X

S
|aS(t)|2 = 1



Operator shape: Right weight

Right-Weight:  “emergent” density following from unitarity 

x

⇢R(x, t)⇢L(x, t)Each string has right/left edges beyond 
which it is purely identity. 

ρ looks at the density distribution of the 
“right front” of the operator. 

As operator spreads, weight moves to 
longer Pauli strings. 



Operator shape: unconstrained circuit

x

t Front dynamics: biased diffusion

Nahum et. al., (2017) 
von Keyserlingk et. al (2017) 

U†(�t)SU(�t)

has amplitudes for 

making S 
shorter

leaving it same 
length

making S 
longer

But, biased towards making S longer.
 

Example, only 3/15 non-identity 
two-site spin 1/2 operators have 

identity on the right site.  



Operator shape: unconstrained circuit

Nahum et. al., (2017) 
von Keyserlingk et. al (2017) 

t

S

· · ·



Nahum et. al., (2017) 
von Keyserlingk et. al (2017) 

t

S

· · ·

t+ 1

Probability: 12/15

Operator shape: unconstrained circuit



Operator shape: unconstrained circuit

Nahum et. al., (2017) 
von Keyserlingk et. al (2017) 

t

S

· · ·

t+ 1

Probability: 3/15



Operator shape: unconstrained circuit

x

t Front dynamics: biased random-walk

Nahum et. al., (2017) 
von Keyserlingk et. al (2017) 
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Emergent hydrodynamics:

vB ⇠ 1� 2

q2
; D⇢ ⇠ 2

q2



Operator shape: unconstrained circuit

Figure from: 
von Keyserlingk et. al (2017) 



Setup: Random Conserving Circuit Model

t = 0
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t = 2

t = 3

t = 4
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Operator Spreading

Operator dynamics governed by the interplay between:

X

S
|aS(t)|2 = 1Unitarity:

Conservation law:

LX

i=1

aci (t) = constant
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Spreading of conserved charges

First, consider spreading of conserved density

aci (t = 0) = �i0

X

i

aci (t) = 1

O0 = z0
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Diffusion & conserved amplitudes: intuition

Initial state:  Infinite temperature equilibrium 
+ local charge perturbation

x

ac
x

1

t = 0

O0 = z0

⇢0 =
1

2L
[I+ ✏O0]



Diffusion & conserved amplitudes: intuition

Initial state:  Infinite temperature equilibrium 
+ local charge perturbation

x

ac
x

Diffusive charge spreading (coarse grained): 

x

ac
x t > 0

1

t = 0

p
t

1/
p
t

O0 = z0

hzi(x, t) = Tr[⇢(t)z
x

]

=
✏

2L
Tr[⇢(t)z

x

]

= ✏ a

c

x

(t) ⇠ 1p
t

e

� x

2

4D
c

t

⇢0 =
1

2L
[I+ ✏O0]



Diffusion & conserved amplitudes

Random conserving circuit model

coarse grain+
scaling limit

Dc =
1

2
independent of q

a

c(x, t) ⇡
r

1

2⇡t
e

� x

2

2t

X

i

aci (t) = 1

O0 = z0
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Diffusive Lump

Total operator weight in the diffusive lump of  conserved 
charges decreases as a power-law in time. 

Significant weight in a “diffusive cone” near the origin, even 
at late times. 

X

i

aci (t) = 1
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Slow emission of non-conserved 
operators

• No net loss in operator weight (unitarity). 

• Conserved parts emit a steady flux of “non-conserved” 
operators. 

• The local production of non-conserved operators is 
proportional to the square of the diffusion current, as 
in Ohm’s law:

�⇢nci (t) ⇠ (aci (t)� aci+1(t))
2

VK Vishwanath Huse (2017)

⇠ (@
x

a

c(x, t))2



Emergence of dissipation

The dissipative process is the conversion of 
operator weight from locally observable conserved 
parts to non-conserved, non-local (non-observable) 
parts at a slow hydrodynamic rate.

Observable entropy increases, while total 
von Neumann entropy of the full system is 
conserved.



Increase in observable entropy

⇢(t) =
1

2L
[I+ ✏O0(t)] Svn(t) = const

Oc
0(t) =

X

i

aci (t)zi

Sc
vn(t) = �Tr[⇢c(t) log ⇢c(t)]

= L log(2)� 1

2

X

i

|aci (t)|2 + · · ·

d

dt

S

c
vn(t) ⇠

1

2Dc

Z
dx|jc(x)|2
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Putting it all together
• Diffusion of conserved densities: Local conserved densities 

spread diffusively.  The weight of O(t) on the conserved parts (which live 
in a diffusive cone near the origin) slowly decreases as a power-law in 
time. Thus significant weight near the origin even at late times. 

• Slow Emission of non-conserved operators: No net loss in 
operator weight (unitarity). Conserved parts emit a steady flux of “non-
conserved” operators. The emission happens at a slow hydrodynamic 
rate set by the local diffusive currents of the conserved densities. 

• Ballistic spreading of non-conserved operators: Once 
emitted, the non-conserved parts spread ballistically, quickly becoming 
non-local and hence non-observable.  The propagation of non-conserved 
fronts is described by biased diffusion in 1D for random circuit model. 

• Diffusive tails behind ballistic front: Finally, the slow diffusive 
modes lead to power-law “tails” behind the leading ballistic front, coming 
from ``lagging” fronts emitted at later times. 
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• Diffusion of conserved densities: Local conserved densities 
spread diffusively.  The weight of O(t) on the conserved parts (which live 
in a diffusive cone near the origin) slowly decreases as a power-law in 
time. Thus significant weight near the origin even at late times. 

• Slow Emission of non-conserved operators: No net loss in 
operator weight (unitarity). Conserved parts emit a steady flux of “non-
conserved” operators. The emission happens at a slow hydrodynamic 
rate set by the local diffusive currents of the conserved densities. 

• Ballistic spreading of non-conserved operators: Once 
emitted, the non-conserved parts spread ballistically, quickly becoming 
non-local and hence non-observable.  The propagation of non-
conservdescribed by biased diffusion in 1D for random circuit model. 

• Diffusive tails behind ballistic front: Slow diffusive modes lead 
to power-law “tails” behind the leading ballistic front, coming from 
``lagging” fronts emitted at later times. Show up in the OTOC.

Putting it all together



Operator shape: conserving circuit



Coupled hydrodynamic description

Diffusion of conserved charges

Biased diffusion of non-conserved fronts emitted from 
local gradients in the conserved charges  



OTOC

Consider zero “chemical potential” / “infinite temperature”  

OTOC’s sensitive to both shape and internal structure



OTOC:  z(t), r



Existence of a Lyapunov Regime
• No simple exponential growth in OTOC

• OTOC does show early-time exponential growth in large 
N/holographic/semiclassical models

• Requires a small parameter ε in the quantum setting 
(furnished by 1/N or a weak scattering rate)

• Spatially local systems potentially have a small parameter 
because it takes a large time                     for a large 
commutator to build up. Simple exponential regime may still 
not exist due to front broadening  

t⇤ ⇠ |x|/vB

t⇤ =

1

�
log

1

✏C ⇠ ✏ e�t

C(x0, t) ⇠ exp


� (x0 � vBt)

2

2Dt

�



< 0

> 0

�(v)

t

x

vB�vB

C(x0, t) = h|[V (0, t),W (x0)]|2i

< 0

> 0

�(v)

t

x

vB�vB

OTOC at fixed vOTOC at fixed x0
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Classical chaos

x

t

Classically, C(x,t) grows or decays in time along 
rays with a velocity dependent Lyapunov exponent

�(v) > 0

�(v) < 0�(v) < 0

VK, Huse Nahum 2018
Lieb-Robinson 1972, Deissler, Kaneko 1986

C(x = vt, t) ⇠ e

�(v)t

Scrambled

�(vB) = 0�(vB) = 0



Quantum chaos: large N/ semiclassical

Large N/ semiclassical quantum 
models show exponential regime: 

C(x, t) ⇠ 1

N

2
e

�L(t�|x|/vB)

e.g. SYK chain (Gu, Qi, Stanford 2016), 
weakly interacting diffusive metals (Patel et. 

al. 2017,  Aleiner et. al 2016)

x

t

�(v) > 0

�(v) < 0�(v) < 0

�(vLR) = 0
�(vLR) = 0

Scrambled
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“Strongly quantum chaos”

x

t

�(v) < 0�(v) < 0

�(vLR) = 0
�(vLR) = 0

No exponentially growing regime with positive Lyapunov 
exponents seems to exist (yet?) for  “strongly quantum” many-

body chaos.   

Scrambled, 
but no 

exponential 
growth

VK, Huse Nahum 2018



Summary & Outlook
• Operator spreading with diffusive conserved densities governed by 

multiple coupled diffusive hydrodynamic processes. Distributed over 
conserved and not conserved operators, with separation of time scales 

• Concrete resolution of the fundamental tension between unitarity and 
dissipation. 

• Some Extensions:

• Understand operator dynamics in other classes of systems? With 
broken symmetries? Integrable systems? 

• Positive Lyapunov exponents for strongly quantum systems? 

• Entanglement dynamics with conservation laws

• Connections with Hamiltonian dynamics at finite temperature?

• Connections with bounds relating D and vB? Implications for charged 
black-holes?



U(1) Floquet Hamiltonian



λ(v) Forms

�(v)

�(v)

Large N
SYK Chain

v

v

vB

vBv

�(v)

vB

Classical/
Semiclassical

�(v)

vvB

d < 4 d � 4

“Fully”
Quantum

“Fully” Quantum/
Integrable

Also:    Aleiner et. al 2016, 
Patel Sachdev 2017


