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Thermalization time and length Strategy Results

Strategy in a nutshell

Quantum system with a positive-definite, local operator
O(x) > 0

This bounds off-diagonal elements 〈E|O|E′〉 ∼ fluctuations
in terms of diagonal elements 〈E|O|E〉 ∼ thermal equilibrium

This is made quantitatively precise using the ETH Ansatz
[Deutsch ’91, Srednicki ’94, Rigol Dunjko Olshanii ’08]

For E − E′ small, the fluctuations are universally constrained by finite
temperature hydrodynamics

The resulting bound constrains finite temperature properties of QFTs
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Thermalization time and length Strategy Results

Thermalization time and length

The expectation at finite temperature is that correlation functions decay

〈O(t)O〉β ∼ e−t/τ
O
th

except those of conserved densities: ε, n, πi, . . .

Integrating out these ‘thermally gapped’ modes leads to
a local effective theory for ε, n, πi, . . .

Hydrodynamics is valid at late times and long distances

t & τth ≡ max
O

τOth |x| & `th ≡ max
O

`Oth

Hydro very successful (QGP, fluid-gravity, cond mat, . . .)

Note: difficulty in establishing sharp definition of τth, `th
Here they are defined as the cutoff of hydrodynamics
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In systems with quasiparticles, the quasiparticle life-time τqp plays an
important role in transport

[Drude 1900] σdc = ne2

m
τqp

At weak coupling (Fermi-Liquid theory) τth = τqp ∼ 1/g2

Without quasiparticles, τth generalizes τqp

Similarly, thermalization length `th generalizes
the notion of mean free path

Smallest blob that can reach local
thermal equilibrium

Hydrodynamics describes T (x), P (x)
on length scales x� `th
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Fermi-Liquid: τth ∼
1
λ2

EF
kBT

~
kBT

Large N vector: τth ∼ N
~

kBT

ε-expansion: τth ∼
1
ε2

~
kBT


� ~

kBT

Large N matrix models (SYK, holography) have τth ∼
~

kBT

Natural to expect a lower bound

τth ≥ # ~
kBT

Analogous to chaos bound τL ≥
1

2π
~

kBT
[Maldacena Shenker Stanford ’15]

where 〈[A(t), B]2〉 ∼ et/τL , but τth is relevant for transport!
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Large N

ε expansion Strange metals
[Chubukov Sachdev ’93 ...

Custers et al ’03, Mackenzie et al ’13]

Heavy fermions, cuprates
...

ED – small systems

QMC – hard to access real time

dynamics ...

Thermalization
numerics

theory

experiment
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Thermalization time and length Strategy Results

Posivity in relativistic QFT

Lorentz invariant QFTs contain a positive definite operator

O ≡
∫
dx+T++ ≥ 0

where x+ = x+ t and T++ = Ttt + 2Ttx + Txx

Positivity in lattice systems

Occupation number, energy density, etc. are
bounded below in lattice systems

O ≡ n̂− nmin ≥ 0

[Faulkner Leigh Parrikar Wang ’16]

[Hartman Kundu Tajdini ’16]

energy density momentum density ‘pressure’
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Oab ≡ 〈a|O|b〉 is a positive matrix in any sub-Hilbert space

diagonal ≥ off-diagonal

To make this picture quantitative, we will use the ETH Ansatz:

〈a|O|b〉 = δab〈O〉T + e−S/2
√
GOORab

with states in a microcanonical window Ea, Eb ∈ [E − ∆E
2 , E + ∆E

2 ]

Oab =
Equilibrium
thermodynamics

Fluctuations
(thermalization, transport)

[Deutsch ’91]

[Srednicki ’94]
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ETH Ansatz: 〈a|O|b〉 = δab〈O〉T + e−S/2
√
GOO(ω)Rab

The operator need not be local [Garrison Grover ’15] (but it helps)

Proof: Let us write 〈a|O|b〉 = δab〈O〉T + f(Ea, Eb)Rab and find f

GOO(ω) =
∫
dt eiωt〈O(t)O〉T

=
∑
b

∫
dt eiωt〈a|O(t)|b〉〈b|O|a〉

=
∑
b

δ(ω − Eb + Ea)|fab|2 |Rab|2︸ ︷︷ ︸
→1

Then taking
∑
b →

∫
dEb Ω(Eb) gives |fab|2 = 1

Ω(Eb)GOO(Eb − Ea)

[Deutsch ’91]

[Srednicki ’94]

‘generic’ operator thermal exp. value thermal Green’s function

energy eigenstates density of states random matrix
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ETH Ansatz: 〈a|O|b〉 = δab〈O〉T + e−S/2
√
GOO(ω, k)Rab

applied to positive O =
∫
dx+ T++ or O = n̂− nmin.

Eigenvalue repulsion of Rab can overcome e−S/2 suppression

Specifically, a real symmetric matrix Aab satisfies

λ2
max ≥

1
N

∑
ab

|Aab|2

which gives schematically

|〈O〉|2 ≥ 1
N

∑
ab

e−SGOO(ω, k)

(n− nmin)2
choose narrow window so that
ω, k small, and GOO(ω, k)
controlled by hydrodynamics
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|〈O〉|2 ≥ 1
N

∑
ab

e−SGOO(ω, k) with O = n̂− nmin

The RHS (fluctuations) will be universally fixed by hydrodynamics if

ω .
2π
τth

k .
2π
`th

Many things can happen in the IR (e.g. symmetry breaking) and GOO
will reflect that. Generically, bound gives UV constraints on IR physics.

Diffusive dynamics at late times

〈ji〉 = −D∇in+O(`2th∇2) ⇒ GROO(ω, k) = χDk2

−iω +Dk2

Corrections due to hydrodynamic fluctuations can (and should) be taken
into account – they can give important corrections even for ω < 2π/τth
[Mukerjee Oganesyan Huse ’05, Kovtun ’03]
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|〈O〉|2 ≥ 1
N

∑
ab

e−SGOO(ω, k) with O =
∫
dx+ T++

IR divergent expectation value |〈O〉| ∼ εL !
need to regulate with finite volume states

Hydrodynamics: Lorentz and translation invariant IR

〈Tµν〉 = εuµuν + P∆µν − η∆µα∇〈αuβ〉∆βν − ζ∆µν∇αuα +O(`2th∇2)

with ∆µν = gµν + uµuν .

Solve hydro eom for uµ and ε to get 〈Tµν(g)〉  GTT ∼ δ〈T 〉
δg .

sound: ω = ±csk −
i

2Γsk2 + . . . Γs =
ζ + 4

3η

sT

diffusion: ω = −iD⊥k2 + . . . D⊥ = η

sT



Thermalization time and length Strategy Results

|〈O〉|2 ≥ 1
N

∑
ab

e−SGOO(ω, k) with O =
∫
dx+ T++

IR divergent expectation value |〈O〉| ∼ εL !
need to regulate with finite volume states

Hydrodynamics: Lorentz and translation invariant IR

〈Tµν〉 = εuµuν + P∆µν − η∆µα∇〈αuβ〉∆βν − ζ∆µν∇αuα +O(`2th∇2)

with ∆µν = gµν + uµuν .

Solve hydro eom for uµ and ε to get 〈Tµν(g)〉  GTT ∼ δ〈T 〉
δg .

sound: ω = ±csk −
i

2Γsk2 + . . . Γs =
ζ + 4

3η

sT

diffusion: ω = −iD⊥k2 + . . . D⊥ = η

sT



Thermalization time and length Strategy Results

|〈O〉|2 ≥ 1
N

∑
ab

e−SGOO(ω, k) with O =
∫
dx+ T++

IR divergent expectation value |〈O〉| ∼ εL !
need to regulate with finite volume states

Hydrodynamics: Lorentz and translation invariant IR

〈Tµν〉 = εuµuν + P∆µν − η∆µα∇〈αuβ〉∆βν − ζ∆µν∇αuα +O(`2th∇2)

with ∆µν = gµν + uµuν .

Solve hydro eom for uµ and ε to get 〈Tµν(g)〉  GTT ∼ δ〈T 〉
δg .

sound: ω = ±csk −
i

2Γsk2 + . . . Γs =
ζ + 4

3η

sT

diffusion: ω = −iD⊥k2 + . . . D⊥ = η

sT



Thermalization time and length Strategy Results

Contents

1 Thermalization time and length

2 Strategy

3 Results



Thermalization time and length Strategy Results

The bound:

(ε+P )2 ≥ 64π3

L5 sinh ∆ω
2T

∫ ∆ω

−∆ω
dω

sin2 Lω
2

ω2
sinh 1

2T (∆ω − |ω|)
sinh ω

2T
ImGRT++T++

(ω, kmin)

Writing s = soT
3, it has the form

so ≥ F
(
η

s
,
ζ

s
, cs, `thT, τthT

)

for N →∞, so ∼ N2 bound becomes weak.

(free scalar: so = 4π2

45 . QGP at large T : so ' 20)

|〈O〉|2 from dx+ integral fixed by hydro

size of window fluctuation-dissipation
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Exclusion plot so ≥ F
(
η
s ,

ζ
s , cs, `thT, τthT

)
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Bound on thermalization!

s`3th ≥ 4π3
∫ ∞

0

y(a1 + a2y
2)

(ey − 1)(a3 + a4y2)dy

∼ 1
c2s

∼ η

s
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Application of relativistic bound: Quark Gluon Plasma
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causality

ANEC

QGP

causality bound:
D⊥ ≤ c `th

[Hartman Hartnoll Mahajan ’17]

ANEC bound:
`thT & 1

KSS limit:
η/s ≥ 1/4π
[Kovtun Son Starinets ’04]
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Lattice bound: (with a few extra assumptions)

(n− nmin)2`dth & χT

Application: Hubbard model

H = t
∑
<ij>

c†i cj + U
∑
i

n2
i

At high T , χ ∼ n/T so we find

n`dth & 1

Non-quasiparticle derivation of a MIR-like bound!
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Summary:

(1) relativistic QFTs and
latticess have O ≥ 0

(2) ETH makes precise
diagonal ≥ off-diagonal

(3) off-diagonal terms
universally controlled by
hydrodynamics

(4) certain parameter
regions violate positivity!
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Outlook:

Can positivity+ETH bounds explain ρ ∼ T?

Look for violations of these bounds to probe for breakdown of ETH

CFT perspective: ETH ⇒ transport=4pt function. Conformal
bootstrap?

Sharper definition of τth, `th needed for sharp bounds!

Thanks!
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