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The Cuprates

Appeal to the holographer :

Non Quasi-Particle physics

Strong momentum relaxation → Incoherent transport

Competing orders with broken translations



Fourier/Ohm law

Experiments on transport of conserved charges probe
collective degrees of freedom

Apply electric field e−iωtE0 and temp gradient e−iωt∇ lnT0

Extract response of electric J i(ω) and thermal current
J iQ(ω) = −T it(ω)− µJ i(ω)

Transport coefficients are packaged in Ohm/Fourier law

(
J(ω)
JQ(ω)

)
=

(
σ(ω) Tα(ω)
T ᾱ(ω) T κ̄(ω)

)(
E0

−∇ lnT0

)

From linear response e.g. σ = GJJ(ω, k = 0, k′ = 0)/(i ω)

The DC limit ω → 0 is experimentally interesting



Setup

To model in holography:

CFT with a global U(1)

Finite chemical potential µ0

Finite temperature T0

Introduce periodic sources that can relax momentum:

Local chemical potential µ(x)

Local temperature T (x)

Local strain gij(x)

Probe with external electric field ∇δµ = E and temp gradient
−∇δT/T = ζ to extract conductivities

→ Powerful gravitational techniques give access to the RG flow



AdS/CMT

The CFT vacuum is modelled by AdSd+2

ds2 = r2 (−dt2 + dx2
d) +

dr2

r2



AdS/CMT

Schematically the bulk action is

L = Rd+2 + Λ− 1

4
F 2 + matter

Use the relevant/marginal ones to deform the boundary theory

S = SCFT +

∫
dd+1xφ(x)O(x)

Introduce a black hole (brane) horizon in the bulk to raise
temperature T



AdS/CMT

Universal deformations are

The stress tensor

ds2 = r2 (−dt2 + dx2
d + δgµν(x)dxµdxν) +

dr2

r2
+ · · ·

The chemical potential

A = µ(x) dt+ · · ·

Subleading terms give the VEVs

The dual action is

S = SCFT +

∫
µJ t +

1

2
δgµνT

µν



RG Flows with broken translations

UV

Unbroken IR
(AdS, Lifshitz, Hyperscale Violating)

Broken IR (!?)

Holographic Lattice Density Wave

Strong lattices can lead to new IR fixed points with broken
translations → Incoherent transport

Similar to the spontaneously broken ones

Transport at low frequencies is different



Transport Properties

Drude Metal

Incoherent Metal

Weak lattices gives small momentum relaxation τ−1 rates and
σ(ω → 0) ∝ τ
Strong lattices lead to incoherent transport. Anything
universal at low frequencies?

Focus on DC limit
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General Considerations

Define theory on a spatially periodic manifold

ds2 = −dt2 + γij(x) dxidxj

Aext = µ(x) dt

with ∂t a symmetry. To study transport:

Perturb by temperature gradient and electric field

δds2 = 2φT dt
2, δAext = −µφT dt+ φE dt

∂i lnT = −ζi = −∂iφT , Ei = −∂iφE

Compute response for conserved electric δjµ and heat
currents δJµQ = −δTµt − µ δJµ

In the DC limit we have ∂tφT = ∂tφE = 0 and ζ, E are closed
one-forms.



Setup for “lattices”

Introduce periodic lattice (deformation) on the boundary
[Hartnoll, Hofman][Horowitz, Tong, Santos]

Focus on simple black hole topologies [AD, Gauntlett, Griffin,

Melgar]



DC conductivities from BH horizons

Bulk theory is Einstein-Maxwell

Consider E/M charged, static black branes

ds2 = −UGdt2 +
F

U
dr2 + ds2(Σd)

A = at dt

ds2(Σd) = gij(r, x)dxidxj

Asymptotically, r →∞

U → r2, F → 1, at(r, x)→ µ(x)

G→ Ḡ(x), gij(r, x)→ r2γij(x)

Local µ, T and strain



DC conductivities from BH horizons

Close to the horizon as r → 0

ds2 = −4πT r dt2 + (4πT r)−1 dr2 + γ
(h)
ij (x) dxi dxj

A = r ρ(h)(x) dt

The horizon quantities γ
(h)
ij , ρ(h) are different objects from the

field theory γij and ρ

In the limit long lattice periods L limit

γ
(h)
ij (x) = cγ γij(x) +O(L−2)

ρ(h)(x) = cρ ρ(x) +O(L−2)

Limit to connect to hydro/gravity



DC conductivities from BH horizons

For the perturbation:

δ(ds2) = δgµν(r, x)dxµdxν + 2GUφT dt
2,

δA = δaµ(r, x)dxµ + (at φT + φE) dt

Split perturbation in terms with and without sources

Look for a perturbative solution with ∂t a symmetry

Complicated system of linear PDE’s:
gµν → 1

2 (d+ 2) (d+ 3)− (d+ 2) functions
Aµ → (d+ 2)− 1 functions



Radial Hamiltonian

Imagine radial foliation by hypersurfaces e.g. normal to ∂r

Radial evolution Hamiltonian is sum of constraints

H∂r =

∫
N H+NµHµ +D G + b.t.

At infinity they yield Ward identities

∇µ 〈Tµν〉 = Fµν 〈Jν〉 , ∇µ 〈Jµ〉 = 0, 〈Tµµ〉 = anom

Meaningful but not closed system without e.g. hydro



DC conductivities from BH horizons

Examine constraints close to the horizon

Impose infalling conditions

Define

vi ≡ −δg(0)it , w ≡ δa(0)t ,

p ≡ −4πT
δg

(0)
rt

G(0)
− δg(0)it g

ij
(0)∇j lnG(0)



DC conductivities from BH horizons

Constraints on the horizon give

Ht ⇒ ∇ivi = 0

G ⇒ ∇2w + vi∇ia(0)t = −∇iEi

Hj ⇒ 2∇i∇(i vj) + a
(0)
t ∇jw −∇j p = −4πT ζj − a(0)t Ej

Solve for a Stokes flow on the curved black hole horizon

Closed system of equations in d dimensions

Not a derivative expansion

Related work
[Damour][Thorne, Price][Eling, Oz][Bredberg, Keeler, Lysov, Strominger]

What does this have to do with the boundary?
[Komar][Policastro, Son, Starinets][Iqbal, Liu][Blake, Tong]



DC conductivities from BH horizons

The perturbative steady state geometry is stationary

ds2 = −H2 (dt+ α)2 + ds2 (MD−1)

A = At (dt+ α) + β

with ∂t Killing

Diffeo invariance

t→ t+ ΛE(ym), α→ α+ dΛE(ym)

Gauge invariance

A(t, ym)→ A(t, ym) + dΛM (ym), β → β + dλM

Assume absence of anomalies



DC conductivities from BH horizons

Diffeos + Gauge invariance constrain the lower dim bulk
action

L = L(dα, dβ;Ddα,Ddβ, . . .)

The EOMs of α and β give two divergence free antisymmetric
tensors

∇mV mn = 0, ∇mWmn = 0

Close to the boundary they give the heat and electric currents

J i∞ ≡ 2(γ∞D−1)
1/2V ri

∞ , J iQ∞ ≡ −2(γ∞D−1)
1/2W ri

∞

are the QFT electric and heat current densities

Can also understand this through Wald’s formalism
[Liu, Lu, Pope]



DC conductivities from BH horizons

This relates that fluxes of the currents we are after to fluxes of
horizon currents∫

C∞

∗JQ∞ =

∫
C(0)

∗JQ(0),

∫
C∞

∗J∞ =

∫
C(0)

∗J(0)



DC conductivities from BH horizons

Solutions for vi, w and p are uniquely fixed by sources E and ζ

Then

J i(0) =
s

4π

(
∂iw + Ei

)
+ ρ vi

JQ
i
(0) = Ts vi

s = 4π
√
g(0), ρ =

√
g(0) a

(0)
t

To find field theory currents J̄ i∞ and Q̄i∞ in e.g. d = 2

J̄ 1 =

∫
dx2 J1

∞, J̄ 2 =

∫
dx1 J2

∞

Can define horizon DC conductivities σH , αH , ᾱH and κ̄H

Argument shows they are equal to the field theory DC
conductivities



Applications

Anomalous scaling for the Hall angle from holography
[AD, Blake]

Bounds on conductivity from holography
[Grozdanov, Lucas, Sachdev, Schalm]

Diffusion and Chaos (?!?)
[Blake][Lucas, Steinberg][AD, Blake][Blake, Davison, Sachdev]
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Setup for modulated phases

No explicit breaking of translations

ds2 = −UGdt2 +
F

U
dr2 + ds2(Σd)

A = at dt

ds2(Σd) = gij(r, x)dxidxj

Demand AdS asymptotics, at r →∞

U → r2, F → 1, at(r, x)→ µ

G→ 1, gij(r, x)→ r2δij

Local µ, T , surface forces



Setup for modulated phases

Close to the horizon as r → 0

ds2 = −4πT r dt2 + (4πT r)−1 dr2 + γ
(h)
ij (x) dxi dxj

A = r ρ(h)(x) dt

The horizon quantities γ
(h)
ij , ρ(h) break translations but the

field theory metric and couplings don’t

Periods will be fixed by the theory, no large period limit



Finite chemical potential

Phase transitions

New IR

UV

IR

Theory can develop symmetry breaking instabilities:

At T >> µ the normal phase bh’s are stable

At T < Tc there exist tachyonic modes

Zero mode at T = Tc gives rise to broken phase black hole
branch

Dual operator φ takes a VEV < φ >

First examples were superfluids [Gubser][Hartnoll, Herzog, Horowitz]



Finite chemical potential

In most cases the order parameter does not break translations

Translation breaking static modes exist at at T < Tc

The one at k = 0 wins in the phase diagram



Finite chemical potential

At finite chemical potential/magnetic field static modes can
start appearing at finite wavelengths

Thermodynamically preferred black branes will break horizon
+ field theory translations



Finite chemical potential

Helical order in D = 5

Bulk Einstein-Maxwell + CS term
[Nakamura, Ooguri, Park] [AD, Gauntlett]

L = R+ Λ− 1

4
F 2 + λ εαβγδεAαFβγFδε

Broken phase develops helical current density/magnetisation

< Jy >= cb sin(kx), < Jz >= cb cos(kx)

Spontaneous breaking of translations

Ground states with broken translations



Modulated phases

Helical order
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Helical black holes come with the period k as a parameter

Fix k by minimising the free energy density

Preferred k changes with temperature



Modulated phases

Inhomogeneous phases in D = 4

L = R− 1
2∂φ

2 − V (φ)−1
4Z(φ)F 2+1

4ϑ(φ) εabcdF
abF cd

These terms lead to charge/magnetisation density wave
phases at finite chemical potential/magnetic fields

Standard terms of N = 2 SUGRA in D = 4 → appear in
top-down models



Modulated phases

Space of solutions depends on a reciprocal lattice

(
x′, y′

)
≡
(
x′ +

Lx
sinα

n1 − cotαLy n2, y
′ + Ly n2

)

ds23 = −dt2 + dx′2 + dy′2

A = µdt+B xdy

Need to minimise the free energy density w(T, µ, kx, ky, α)



Modulated phases

For fixed T and µ vary the free energy density

w = −s̄T − µ J̄ t + T̄ tt

with respect to Lx = 2π/kx, Ly = 2π/ky and α

−Lx
δw

δLx
= w + T̄ xx, −Ly

δw

δLy
= w + T̄ yy

δw

δα
= cotα(w + T̄ xx + T̄ yy)−

LxLy
sinα

T̄ xy

Like a perfect fluid on average at the extrema of the free energy
density [AD, Gauntlett]

w = −p
T̄ ij = p γij



Modulated phases

For B = 0 striped structures seem preferred

Charge density gets modulated

Spontaneous electric/heat magnetisation current densities
appear



Modulated phases

Density waves

Switching on magnetic field makes other structures preferred
[AD, Gauntlett]

Triangular lattice formations seem to win



Finite chemical potential

Density waves

At lower temperatures translations breaking effects become
stronger

IR Theory develops point-like defect structure

New ground states to be found



Conductivity

The system lives in Minkowski space and is held at constant µ
and T

Operator VEVs in the thermal state break translations

The momentum charges P(j) = T̄ tj are conserved and overlap

with J̄ j and J̄ jQ

Assuming the preferred thermal phase, relativistic symmetry
yields the constraints

µσij(ω) + Tαij(ω) =
iρ

ω
δij

µT ᾱij(ω) + T κ̄ij(ω) =
iTs

ω
δij

[Hartnoll, Herzog] [AD, Gauntlett, Griffin, Ziogas]

The operator J iinc = Ts J i − ρ J iQ has no overlap with P(j)

[Davison, Gouteraux, Hartnoll]



DC Conductivity

Physical expectation for a normal fluid is
σinc(ω) = G(ω)JincJinc/(iω) is finite as ω → 0 with
σ0 = σinc(0)

Then at low frequencies

σij(ω)→
(
πδ(ω) +

i

ω

)
ρ2

ε+ p
δij + σij0 ,

T ᾱij = Tαij(ω)→
(
πδ(ω) +

i

ω

)
ρTs

ε+ p
δij − µσij0 ,

T κ̄ij(ω)→
(
πδ(ω) +

i

ω

)
(Ts)2

ε+ p
δij + µ2σij0 ,

As a ω → 0 limit

σij0 = lim
ω→0

[
(Ts)2σij(ω)− 2(Ts)ρTαij(ω) + ρ2T κ̄ij(ω)

]



DC Conductivity

Think about DC transport from the bulk

Adding a boosted background yields a correct perturbation

DC calculation in the bulk is ill defined

Form the boost invariant combination of the currents to find
[AD, Gauntlett, Griffin, Ziogas]

σij0 = (Ts)2σijH − 2T 2sραijH + ρ2T κ̄ijH

Generalisable to non-thermodynamically preferred states

Reproduces earlier results in specific homogeneous models
[Amoretti, Arean, Gouteraux, Musso]
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Summary

Argued that DC transport is fixed by horizon “hydrodynamics”

Ground states with broken translations? Properties?

Universal statements?

Finite frequency?
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