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This talk is about thermal physics 

Work in 3+1 or 2+1 dimensions



Old-fashioned view

System is in some state, e.g. equilibrium at temperature T 

Apply external source, e.g. electric field E  

Measure the response, e.g. current J  

Extract transport coefficients by fitting the response to the 
constitutive relation, e.g. J=σE, Ohm’s law 



For DC transport, ω→0

Note ω→0 and T→0 do not necessarily commute. 

If calculate DC transport at T=0, this means kT ≪ ℏω → 0. 
This is “quantum” regime, physics of the ground state. 

If calculate DC transport at T≠0, this means kT ≫ ℏω → 0. 
This is “hydrodynamic” regime, physics of the thermal state. 



where the temperature T was defined in (63) above. Substituting into (110) we obtain a

di↵erential equation for S. Ingoing boundary conditions now amount to the requirement

that near the horizon: S = 1 + ↵1(r � r+) + ↵2(r � r+)2 + · · · . The overall normalisation

is not important as the equation is linear. Indeed we see in (115) that the conductivity is

a ratio of two coe�cients in the near-boundary expansion, so the overall normalisation will

drop out. The coe�cients ↵i are easily found by looking for Taylor series expansions of

(110) at the horizon. We wish to numerically integrate the equation (110) from the horizon

to the boundary. The Taylor expansion at the horizon is necessary because the horizon is

a singular point of the di↵erential equation, so we cannot set the initial data exactly at the

horizon. Therefore we must set the initial conditions a little away from the horizon. The

essential lines of Mathematica code computing the conductivity will look something like

soln[! ] := NDSolve[{AxEqn[!] == 0, S[1� ✏] == Ser[1� ✏,!],

S

0[1� ✏] == SerPrime[1� ✏,!]}, S, {r, ⌘, 1� ✏}]
�[! ] := �I/! S

0[⌘]/S[⌘] /. soln[!][[1]][[1]]

Here ✏ is small number setting the initial distance from the horizon and ⌘ is a small number

determining the distance from the boundary at which the conductivity (115) is evaluated.

The functions Ser and SerPrime are the Taylor series expansion at the horizon and the

derivative thereof, respectively. In performing numerics it is generally convenient to set

L = 1 and furthermore to scale the horizon to r+ = 1. However, one then needs to undo

this scaling to recover physical units.
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Figure 6: The real (left) and imaginary (right) parts of the electrical conductivity computed

via AdS/CFT as described in the text. The conductivity is shown as a function of frequency.

Di↵erent curves correspond to di↵erent values of the chemical potential at fixed temperature.

The gap becomes deeper at larger chemical potential. We have set g = 1 in (115).
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Example: a toy model in 2+1 dimensions

Hartnoll, 0903.3246

A certain strongly interacting scale-invariant quantum 
system without quasiparticles, can compute σ(ω) using 
“holographic” methods:

“hot and dilute”

“cold and dense”

https://arxiv.org/abs/0903.3246


How does one compute σ(ω)?

When have quasiparticles and weak coupling λ→0, can 
use Boltzmann equation. 

For some systems with no quasiparticles, with strong 
coupling λ→∞ and many species N→∞, can use 
holographic methods. 

Not all physical systems are well described by quasi-
particles, and certainly the real world does not have N=∞. 

To make things worse, N→∞ and ω→0 do not commute. 
In holography one always takes N→∞ first.



Hydrodynamics

Universal approach at ħω≪kT, does not care whether λ is 
small or large, whether N is finite or infinite 

Defines what you mean by a transport coefficient, through 
the constitutive relations such as J=σE 

Formulated as classical partial differential equations, so 
“easy” to solve: no path integrals, no Monte-Carlo 



Transport coefficients in hydrodynamics

Variations with respect to the external source give retarded 
correlation functions of observable quantities 

Transport coefficients can be expressed through Kubo 
formulas, e.g.

�(!) =
1

!
ImhJ

x

J
x

iret.(!,q=0)

These may be evaluated from first principles, connecting 
phenomenological hydrodynamics to microscopic physics



Old-fashioned view

Q: What is a transport coefficient? 

A: A parameter in the hydrodynamic equations. The 
connection with microscopics is through the Kubo formulas.



How to count transport coefficients

Hydrodynamic equations are written as a gradient 
expansion near local thermal equilibrium. 

However simply writing down all possible terms with a given 
number of derivatives with a given symmetry is not enough. 

Not all transport coefficients are independent: constraints 
come from field redefinitions, Onsager relations, consis-
tency of thermodynamics, positivity of entropy production.



A simple example: diffusion

Thoughts on the derivative expansion

Pavel Kovtun

(July, 2018)

Introduction

We consider classical equations of motion that describe fluctuations of the classical fields around

some uniform state. For example, these could be Maxwell’s equations, Einstein’s equations, or hy-

drodynamic equations. For linearized fluctuations, we obtain a collection of linear partial di↵erential

equations. The coe�cients multiplying the derivatives in these equations are constant because the

background state is assumed uniform. If any of the equations has time derivatives of second order

or higher, we can introduce new fields which are time derivatives of the old fields, and obtain a

collection of coupled linear di↵erential equations which are all at most first order in time. For N

independent fields 'A we then have N equations

@t'A = KAB'B ,

where KAB contains spatial derivatives. Fourier transforming, we have �i!'A = KAB(k)'B. The

eigenfrequencies are determined by det[�i!�AB �KAB(k)] = 0, and are given by

!n = i�n(k) ,

where �n(k) are the eigenvalues of K(k).

Higher-derivative corrections to the di↵usion equation

Let us think about classical equations of motion that represent small linearized fluctuations around

some background. For example, let us consider a scalar field that obeys the di↵usion equation,

@t' �Dr2' = 0, where D > 0 is the di↵usion constant, and ' represents a linearized fluctuation

around some equilibrium state. We expect that the equation will be corrected by higher derivative

terms, i.e. a more complete description will be given by something like

@t'�Dr2'+ [terms with more derivatives of '] = 0 .

Taking the di↵usion equation as the leading term in the derivative expansion, let us adopt the

derivative counting such that @t ⇠ r2 ⇠ ✏ is small. Then we have the equation with higher-

derivative corrections,
h
@t'�Dr2'

i
+
h
⌧0@

2
t '+D⌧1@tr2'+ �r2r2'

i
+O(✏3) = 0 , (1)

where ⌧0, ⌧1, � may be termed “second-order transport coe�cients”. The coe�cients ⌧0, ⌧1 have

the unit of time, hence the notation. Let us look at the eigenmodes of Eq. (1). Taking the field '

proportional to exp(�i!t+ ik·x), the eigenfrequencies are given by

� i! +Dk

2 � !2⌧0 + i!k2D⌧1 + k

4�+O(✏3) = 0 . (2)

1

Diffusion at leading order, ∂t~∇2~𝜖 is small. One transport 
coefficient D at O(𝜖).

One degree of freedom 𝜑, for example 𝜑=δT.
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around some equilibrium state. We expect that the equation will be corrected by higher derivative
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derivative counting such that @t ⇠ r2 ⇠ ✏ is small. Then we have the equation with higher-

derivative corrections,
h
@t'�Dr2'

i
+

h
⌧0@

2
t '+D⌧1@tr2'+ �r2r2'

i
+O(✏3) = 0 , (1)

where ⌧0, ⌧1, � may be termed “second-order transport coe�cients”. The coe�cients ⌧0, ⌧1 have

the unit of time, hence the notation. Let us look at the eigenmodes of Eq. (1). Taking the field '

proportional to exp(�i!t+ ik·x), the eigenfrequencies are given by

� i! +Dk

2 � !2⌧0 + i!k2D⌧1 + k

4�+O(✏3) = 0 . (2)

1

Looks like three transport coefficients τ0,τ1,Γ at O(𝜖2).

Eigenmodes:
If we now truncate Eq. (2) by first neglecting the O(✏3) terms and then finding the eigenfrequencies,

then at small momentum we have

! = �iDk

2 � i
⇥
�+D2(⌧0+⌧1)

⇤
k

4 +O(k6) , ! = � i

⌧0
+O(k2) . (3)

The first eigenfrequency is the di↵usion mode, now with higher derivative corrections. The second

eigenfrequency is “gapped” (i.e. ! remains non-zero as k ! 0) and for ⌧0 < 0 has a positive imaginary

part. This means that for ⌧0 < 0 the higher-derivative term in Eq. (1) leads to an instability. Now

one can say several things.

We don’t want an instability, hence one might think that we must have ⌧0 > 0 as a consistency

condition on the classical e↵ective theory (1). On the other hand, for ! ⇠ i/⌧0 the two-derivative

term is comparable to the one-derivative term, so the unstable eigenfrequency found in the derivative

expansion is not to be trusted. Hence we don’t know if there is an actual physical instability to

begin with because the instability is predicted in the regime which is outside of the validity of the

derivative expansion.

Note that the instability can be removed by a field redefinition in the derivative expansion.

Indeed, let us define a new field  ⌘ '+ ↵@t'+ �Dr2' = '+O(✏), where ↵ and � are arbitrary.

The field  is the same as ' in the uniform equilibrium (@t = 0, r2 = 0), but not out of equilibrium.

Substituting into (1), we have
h
@t �Dr2 

i
+
h
(⌧0�↵)@2t  +D(⌧1+↵��)@tr2 + (�+ �D2)r2r2 

i
+O(✏3) = 0 . (4)

This has the same form of the derivative expansion as the original theory (1), with the replacements

⌧0 ! ⌧0 � ↵ , ⌧1 ! ⌧1 + ↵� � , � ! �+ �D2 . (5)

This says that in the e↵ective theory (1), formulated as a derivative expansion, the transport coe�-

cients ⌧0, ⌧1, and � are not physical individually, for example the term with two time derivatives can

be removed from the e↵ective theory by a field redefinition. What is physical are the combinations

of the transport coe�cients that are invariant under the transformations (5). The only linear com-

bination of ⌧0, ⌧1, and � which is invariant under (5) is � +D2(⌧0+⌧1), and it is this combination

which determines the physical correction to the di↵usion eigenfrequency.

If we truncate (4) by neglecting the O(✏3) terms, we find the following eigenfrequencies:

! = �iDk

2 � i
⇥
�+D2(⌧0+⌧1)

⇤
k

4 +O(k6) , ! =
i

↵� ⌧0
+O(k2) . (6)

This means that if there was an instability due to ⌧0 < 0, the instability can be removed by a field

redefinition with an appropriate choice of ↵. Also note that the O(k4) correction to the di↵usion

eigenfrequency is insensitive to the the field redefinition, and is the same in Eq. (3) and (6). On the

other hand, the O(k2) correction to the gapped frequency is sensitive to the field redefinition, and

is di↵erent between Eq. (3) and (6).

2

Naively, must have D>0 and τ0>0 for stability.



A simple example: diffusion
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2

The field ψ obeys same equation as 𝜑, but with

So τ0 may be redefined away and is not a transport 
coefficient. The only transport coefficient at O(𝜖2) is

which is invariant under the above redefinitions. The 
instability at τ0<0 can be removed by a field redefinition.

If we now truncate Eq. (2) by first neglecting the O(✏3) terms and then finding the eigenfrequencies,
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⌧0
+O(k2) . (3)

The first eigenfrequency is the di↵usion mode, now with higher derivative corrections. The second

eigenfrequency is “gapped” (i.e. ! remains non-zero as k ! 0) and for ⌧0 < 0 has a positive imaginary

part. This means that for ⌧0 < 0 the higher-derivative term in Eq. (1) leads to an instability. Now

one can say several things.

We don’t want an instability, hence one might think that we must have ⌧0 > 0 as a consistency

condition on the classical e↵ective theory (1). On the other hand, for ! ⇠ i/⌧0 the two-derivative

term is comparable to the one-derivative term, so the unstable eigenfrequency found in the derivative

expansion is not to be trusted. Hence we don’t know if there is an actual physical instability to

begin with because the instability is predicted in the regime which is outside of the validity of the

derivative expansion.

Note that the instability can be removed by a field redefinition in the derivative expansion.

Indeed, let us define a new field  ⌘ '+ ↵@t'+ �Dr2' = '+O(✏), where ↵ and � are arbitrary.

The field  is the same as ' in the uniform equilibrium (@t = 0, r2 = 0), but not out of equilibrium.

Substituting into (1), we have
h
@t �Dr2 

i
+
h
(⌧0�↵)@2t  +D(⌧1+↵��)@tr2 + (�+ �D2)r2r2 

i
+O(✏3) = 0 . (4)

This has the same form of the derivative expansion as the original theory (1), with the replacements

⌧0 ! ⌧0 � ↵ , ⌧1 ! ⌧1 + ↵� � , � ! �+ �D2 . (5)

This says that in the e↵ective theory (1), formulated as a derivative expansion, the transport coe�-

cients ⌧0, ⌧1, and � are not physical individually, for example the term with two time derivatives can

be removed from the e↵ective theory by a field redefinition. What is physical are the combinations

of the transport coe�cients that are invariant under the transformations (5). The only linear com-

bination of ⌧0, ⌧1, and � which is invariant under (5) is � +D2(⌧0+⌧1), and it is this combination

which determines the physical correction to the di↵usion eigenfrequency.

If we truncate (4) by neglecting the O(✏3) terms, we find the following eigenfrequencies:

! = �iDk

2 � i
⇥
�+D2(⌧0+⌧1)

⇤
k

4 +O(k6) , ! =
i

↵� ⌧0
+O(k2) . (6)

This means that if there was an instability due to ⌧0 < 0, the instability can be removed by a field

redefinition with an appropriate choice of ↵. Also note that the O(k4) correction to the di↵usion

eigenfrequency is insensitive to the the field redefinition, and is the same in Eq. (3) and (6). On the

other hand, the O(k2) correction to the gapped frequency is sensitive to the field redefinition, and

is di↵erent between Eq. (3) and (6).

2

If we now truncate Eq. (2) by first neglecting the O(✏3) terms and then finding the eigenfrequencies,

then at small momentum we have

! = �iDk

2 � i
⇥
�+D2(⌧0+⌧1)

⇤
k

4 +O(k6) , ! = � i

⌧0
+O(k2) . (3)

The first eigenfrequency is the di↵usion mode, now with higher derivative corrections. The second

eigenfrequency is “gapped” (i.e. ! remains non-zero as k ! 0) and for ⌧0 < 0 has a positive imaginary

part. This means that for ⌧0 < 0 the higher-derivative term in Eq. (1) leads to an instability. Now

one can say several things.

We don’t want an instability, hence one might think that we must have ⌧0 > 0 as a consistency

condition on the classical e↵ective theory (1). On the other hand, for ! ⇠ i/⌧0 the two-derivative

term is comparable to the one-derivative term, so the unstable eigenfrequency found in the derivative

expansion is not to be trusted. Hence we don’t know if there is an actual physical instability to

begin with because the instability is predicted in the regime which is outside of the validity of the

derivative expansion.

Note that the instability can be removed by a field redefinition in the derivative expansion.

Indeed, let us define a new field  ⌘ '+ ↵@t'+ �Dr2' = '+O(✏), where ↵ and � are arbitrary.

The field  is the same as ' in the uniform equilibrium (@t = 0, r2 = 0), but not out of equilibrium.

Substituting into (1), we have
h
@t �Dr2 

i
+
h
(⌧0�↵)@2t  +D(⌧1+↵��)@tr2 + (�+ �D2)r2r2 

i
+O(✏3) = 0 . (4)

This has the same form of the derivative expansion as the original theory (1), with the replacements

⌧0 ! ⌧0 � ↵ , ⌧1 ! ⌧1 + ↵� � , � ! �+ �D2 . (5)

This says that in the e↵ective theory (1), formulated as a derivative expansion, the transport coe�-

cients ⌧0, ⌧1, and � are not physical individually, for example the term with two time derivatives can

be removed from the e↵ective theory by a field redefinition. What is physical are the combinations

of the transport coe�cients that are invariant under the transformations (5). The only linear com-

bination of ⌧0, ⌧1, and � which is invariant under (5) is � +D2(⌧0+⌧1), and it is this combination

which determines the physical correction to the di↵usion eigenfrequency.

If we truncate (4) by neglecting the O(✏3) terms, we find the following eigenfrequencies:

! = �iDk

2 � i
⇥
�+D2(⌧0+⌧1)

⇤
k

4 +O(k6) , ! =
i

↵� ⌧0
+O(k2) . (6)

This means that if there was an instability due to ⌧0 < 0, the instability can be removed by a field

redefinition with an appropriate choice of ↵. Also note that the O(k4) correction to the di↵usion

eigenfrequency is insensitive to the the field redefinition, and is the same in Eq. (3) and (6). On the
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Another example: relativistic hydrodynamics

Relativistic hydrodynamic equations as written in the text-
books by Landau & Lifshitz (Fluid Mechanics) or by 
Weinberg (Gravitation and Cosmology) 

  a) predict that thermal equilibrium does not exist 

  b) predict that things propagate faster than light

Hiscock, Lindblom, 1984
Hiscock, Lindblom, 1987

https://doi.org/10.1103/PhysRevD.31.725
https://doi.org/10.1103/PhysRevD.35.3723


Another example: relativistic hydrodynamics

One can mess with the equations by coupling them to 
extra degrees of freedom that take care of stability and  
causality (Israel-Stewart theory). This is what is used in 
practice if you actually want to solve the equations. 

Note however that in hydrodynamics the quantities T, v, μ 
have no microscopic definitions out of equilibrium and can 
be redefined, just like in the above example of diffusion. 

Landau & Lifshitz choose one definition, Eckart/Weinberg 
choose another. One can adopt other definitions such that 
the problems with causality and instability go away, just like 
in the above example of diffusion.

Freistuhler, Temple, 2014 
Bemfica, Disconzi, Noronha, 1708.06255

https://arxiv.org/abs/1708.06255


Another example: relativistic hydrodynamics

For fluids whose only conserved quantites are energy and 
momentum in 3+1 dim, there are 

2 transport coefficients at O(∂) 

10 transport coefficients at O(∂2) 

more transport coefficients at O(∂3)



Hydrodynamics is great and has been around for 
many years. However, there are issues. 



Hydrodynamics contains its own demise

Conventional hydrodynamics assumes locality 

Hence the derivative expansion is local, e.g. 
Tij = O(1) + O(∂) + O(∂2) + …

Euler eq-s Navier-Stokes eq-s
ABCDEFG… eq-s

But hydrodynamic equations predict gapless modes, e.g. 
sound waves with ω=vsk + … 

Gapless modes mediate long-range correlations and may 
lead to a breakdown of locality.
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Synopsis 
The self-diffusion of a tagged particle in a 3-dimensional fluid of identical particles cannot be 

described by a linear diffusion equation which contains corrections to Fick's law proportional 
to V4n, V6n .... For long times a t ~} divergence is found for the super-Burnett coefficient, the 
proportionality coefficient of the V4-term, both from the mode-mode coupling theory and the 
kinetic theory of hard spheres. Furthermore, higher asymptotic corrections of the form t -2 +2-n 
(n = 2, 3 .... ) to the t-3/2-time tail of the velocity autocorrelation function are calculated from 
both theories and the results are compared. 

1. Introduction. It is widely believed that as a consequence of  the long-time tail 
in the velocity autocorrelation function of  a tagged particle t -  5) the super-Burnett 
coefficient in the linear diffusion equation does not exist. 

Here we shall prove this statement in a more explicit way with the help of  the 
phenomenological mode-mode co.upling theory and the kinetic theory of  hard 
spheres. The reason why the proof  is carried out along two lines is the following. 
The mode-mode coupling formulae, which are valid for small wave numbers and 
frequencies, are so simple and generally applicable that it is interesting to know 
up to which order in wave number and frequency they may be used. To that end 
we study in this section the diffusion of  a tagged particle, in a fluid of  identical 
particles and we derive formal expressions for the diffusion coefficient and the 
super-Burnett coefficient. In section 2 the super-Burnett coefficient is calculated 
from the phenomenological theory which is not restricted to the low-density 
regime, and in sections 3 and 4 from the kinetic theory of  hard spheres at low 
densities, and the results are compared. We end in section 5 with some conclu- 
sions which may be drawn from the previous sections. 

Hydrodynamics contains its own demise

Thus the existence of sound may imply non-local 
correlations. 

Correlations give rise to transport coefficients, through 
the Kubo formulas. 

Thus the existence of sound may imply non-existence 
of transport coefficients. 

This is indeed what happens.
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Synopsis 
The self-diffusion of a tagged particle in a 3-dimensional fluid of identical particles cannot be 

described by a linear diffusion equation which contains corrections to Fick's law proportional 
to V4n, V6n .... For long times a t ~} divergence is found for the super-Burnett coefficient, the 
proportionality coefficient of the V4-term, both from the mode-mode coupling theory and the 
kinetic theory of hard spheres. Furthermore, higher asymptotic corrections of the form t -2 +2-n 
(n = 2, 3 .... ) to the t-3/2-time tail of the velocity autocorrelation function are calculated from 
both theories and the results are compared. 

1. Introduction. It is widely believed that as a consequence of  the long-time tail 
in the velocity autocorrelation function of  a tagged particle t -  5) the super-Burnett 
coefficient in the linear diffusion equation does not exist. 

Here we shall prove this statement in a more explicit way with the help of  the 
phenomenological mode-mode co.upling theory and the kinetic theory of  hard 
spheres. The reason why the proof  is carried out along two lines is the following. 
The mode-mode coupling formulae, which are valid for small wave numbers and 
frequencies, are so simple and generally applicable that it is interesting to know 
up to which order in wave number and frequency they may be used. To that end 
we study in this section the diffusion of  a tagged particle, in a fluid of  identical 
particles and we derive formal expressions for the diffusion coefficient and the 
super-Burnett coefficient. In section 2 the super-Burnett coefficient is calculated 
from the phenomenological theory which is not restricted to the low-density 
regime, and in sections 3 and 4 from the kinetic theory of  hard spheres at low 
densities, and the results are compared. We end in section 5 with some conclu- 
sions which may be drawn from the previous sections. 



So let us look at transport coefficients 
in hydrodynamics in more detail



Example: viscosity

x

y
Momentum transfer 
between layers of fluid, 

Txy = η ∂yvx + O(∂2)

hT xyT xyiret. = p� i!⌘ +O(!2)

In a gas (λ→0) 

η = ρ vth ℓmfp ~ 1/λ2 →∞

In holography (N→∞, λ→∞)  

η = s/4π ~ N2 →∞



Example: viscosity

Momentum can also be 
transfered by collective 
excitations. 

In a gas of sound/shear 
waves:

x

y

`mfp ⇠ 1
⌘

e+pk
2

Contribution 
to viscosity:

in D=3

IR divergent in D=2

Z ⇤

dDk
T

⌘
e+pk

2

⇤T 2

⌘/s



Example: viscosity

• This is the physics of thermal 
fluctuations. It is invisible if 
hydrodynamics is viewed 
just as a collection of partial 
differential equations. 

• If you think η/s can be 
arbitrarily small, think again. 

• Classical hydrodynamics 
may be irrelevant to physics 
in 2+1 dimensions.

x

y



How does one describe these effects quantitatively?



Stochastic hydrodynamics

A toy model for thermal fluctuations:

T ij = T ij
classical(T, v, @T, @v, . . . ) + ⌧ij

appropriate projector with viscosities, to satisfy FDT in equilibrium

Linear hydro fluctuations

Tij = T cl
ij + ⌧ij

Gaussian noise h⌧ij(x)⌧kl(y)i = 2TGijkl �(x�y)

Solve @µT
µ⌫ = 0 �vi = �vi[⌧ ], �T = �T [⌧ ]

Get〈δT δT〉, 〈δvi δvj〉, 〈TijTkl〉, Kubo formulas...

all here

Energy-momentum conservation ⇒

Linear hydro fluctuations

Tij = T cl
ij + ⌧ij

Gaussian noise h⌧ij(x)⌧kl(y)i = 2TGijkl �(x�y)

Solve @µT
µ⌫ = 0 �vi = �vi[⌧ ], �T = �T [⌧ ]

Get〈δT δT〉, 〈δvi δvj〉, 〈TijTkl〉, Kubo formulas...

all here

Gaussian noise

Get ⟨δT δT⟩, ⟨δvi δvj⟩, ⟨Tij Tkl⟩, Kubo formulas

Landau & Lifshitz, 
Statistical Physics Part II



T ij = · · ·+ (✏+p)vivj + · · ·+ ⌧ ij

linear
leading non-linear,
no derivatives term

higher order

Txy Txy = 2Tη  + (ε+p) (ε+p)

v δv

v δv

x

y

x

y

Stochastic hydrodynamics



hT
xy

T
xy

iR = p+O(⇤3T )� i!

✓
⌘ +

17T 2⇤

120⇡2⌘/s

◆
+O

✓
!3/2

(⌘/s)3/2

◆
+O(!2)

Example: viscosity in 3+1 dimensions

0-th order classical 1-st order classical 2-nd order classical

correction to p correction to η cutoff-independent

This is “one-loop” fluctuation correction to ⟨Txy Txy⟩ 

Actual physical viscosity includes all such corrections, 
but no way to compute them all in practice 

Holography is useless here because it takes N→∞

PK, Moore, Romatschke, 1104.1586
PK, Yaffe, hep-th/0303010

https://arxiv.org/abs/1104.1586
https://arxiv.org/abs/hep-th/0303010


hT
xy

T
xy

iR = p+O(⇤3T )� i!

✓
⌘ +

17T 2⇤

120⇡2⌘/s

◆
+O

✓
!3/2

(⌘/s)3/2

◆
+O(!2)

Example: viscosity in 3+1 dimensions

As expected, small η/s implies large corrections to η/s. 
So fluctuations are mandatory for small-viscosity physics. 

Relevant for the quark-gluon plasma  
and unitary Fermi gases. 

Function (η + 1/η) has a minimum, implies a lower bound 
on η. Hydro of QGP with η/s = 1/4π appears inconsistent, 
regardless of the experiment. 

Chafin, Schaefer, 1209.1006
Romatschke, Young, 1209.1604

Fluctuations are more important than 2-nd order hydro.

PK, Moore, Romatschke 1104.1586

PK, Moore, Romatschke 1104.1586

https://arxiv.org/abs/1209.1006
https://arxiv.org/abs/1209.1604
https://arxiv.org/abs/1104.1586
https://arxiv.org/abs/1104.1586


Tµ⌫
cl = Tµ⌫

(0) + Tµ⌫
(1) + Tµ⌫

(2) + . . .

G
xy,xy

(!) = O(1) +O(!) +O(!3/2) +O(!2) + . . .

Thermal fluctuations 
are more important 
than higher-derivative 
hydrodynamics:

S =

Z
d

4
x


1

16⇡G
R+ c1R

2 + c2R
µ⌫
Rµ⌫ + . . .

�

V (r) = �Gm1m2

r


1 +O

✓
Gm

r

◆
+O

✓
G~
r2

◆
+O(e�m0r)

�

m0 ⇠ (ciG)�1/2 Classical: Stelle 1978 
Quantum: Bjerrum-Bohr, Donoghue, Holstein, 2002

Analogy with quantum gravity

Quantum fluctuations 
are more important 
than higher-derivative 
gravity:

http://dx.doi.org/10.1007/BF00760427
http://arxiv.org/abs/hep-th/0211072


Hydrodynamics in 2+1 dimensions

Same one-loop diagram gives:        η=η0+O(lnω),  σ=σ0+O(lnω) 
(scale-invariant theory, μ=0)

Scale-dependent 
transport coef-s:

c=s/T2, counts d.o.f.

⌘(�) ⌘ ⌘(!=�) , �(�) ⌘ �(!=�) , g⌘ ⌘ ⌘/s , g� ⌘ �T/�

�
@g⌘
@�

= � 1

16⇡c

1

g⌘
,

�
@g�
@�

= � 1

8⇡c

1

g� + g⌘

Physical objects (correlation functions) can not depend on the 
arbitrary scale λ, hence RG equations:

σ = charge conductivity,  
related to diffusion constant D=σχ, 
χ = charge susceptibility



Hydrodynamics in 2+1 dimensions

⌘

s
=

�T

�

0 1 2 3 4

η
s

0

1

2

3

4

σ T
χ • Both η/s and σT/χ become large 

as ω➝0. 

• “fixed line” as ω→0:

Viscosity and charge conductivity are not independent 
transport coefficients in 2+1 dimensions

PK, 1205.5040

https://arxiv.org/abs/1205.5040


What is the small parameter?

Simplest case: scale-invariant uncharged relativistic fluid. 

The only dimensionful quantities are T, s, η. 

The only dimensionless combination in natural units c=1 is

ge↵ ⌘ T/s1/D

⌘/s

Fluctuation correction to η is proportional to geff. 

“Coupling constant” geff is small at weak coupling or large N. 

“Coupling constant” geff is large when η/s is small.



This was hydrodynamics with conserved momentum. 
Same thing happens for purely diffusive transport.



Particle and heat diffusion

Fluctuation bounds on charge and heat di↵usion

Pavel Kovtun

Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 5C2, Canada

Abstract

We study thermal fluctuation corrections to charge and heat conductivity in systems with
locally conserved energy and charge, but without locally conserved momentum. Thermal
fluctuations may naturally lead to a lower bound on di↵usion constants for thermoelectric
transport, and need to be taken into account when discussing potential bounds on transport
coe�cients.

1 Introduction

In an interacting many-body system, the response to external sources at long distances is

controlled by transport coe�cients such as thermal conductivity, electrical conductivity, shear

viscosity etc. A first-principles calculation of these transport coe�cients is not an easy prob-

lem, especially when quantum fluctuations are strong, and it is of interest to look for general

model-independent constraints on transport coe�cients. One example of a powerful constraint

is provided by Onsager relations which follow from time-reversal invariance. For transport coef-

ficients in fluids, another set of constraints may be found from a local version of the second law

of thermodynamics. There has also been some interest in constraints on transport coe�cients

which take the form of a lower bound. One often discussed example is a putative lower bound

on the shear viscosity [1] which suggests that quantum fluctuations prevent the existence of

perfect fluids in nature. The two fluids that come closest to the viscosity bound are cold atomic

gases and the quark-gluon plasma, see [2] for a review. In solid-state physics, the Mott-Io↵e-

Regel conductivity bound and its violations have been discussed for many years, see [3] for

a review. Recently, Ref. [4] argued that the di↵usion constants for thermoelectric transport

may be subject to a universal quantum lower bound. The bound of Ref. [4] is imprecise, and

needs better understanding. Here we point out that thermal fluctuations need to be taken into

account when discussing a potential lower bound. A similar argument for the shear viscosity

was put forward in [5]. The qualitative lesson is the same: small values of transport coe�cients,

close to quantum lower bounds, may be subject to large thermal fluctuation corrections. How

important these corrections are is determined by the thermodynamics of the system, and by

the temperature dependence of the transport coe�cients.

2 Linear response

Consider a system which conserves energy and charge, whose local conservation laws are

@t✏+r·j✏ = 0 , @tn+r·jn = 0 , (2.1)

where ✏ is the energy density n is the charge density, and j✏, jn are the corresponding spatial

currents. In local thermal equilibrium in the grand canonical ensemble, ✏ = ✏(T, µ), and
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n = n(T, µ), where T is the temperature and µ the chemical potential corresponding to the

conserved charge. In the hydrodynamic approximation, the spatial currents are expressed in

terms of T , µ and their derivatives,

j✏ = �⇧
11

rT �⇧
12

rµ+ . . . , jn = �⇧
21

rT �⇧
22

rµ+ . . . , (2.2)

where ⇧AB are transport coe�cients which depend on T and µ. The coe�cient ⇧
22

is the

usual electrical conductivity �. The dots denote higher-order terms in the derivative expansion.

Supplementing Eq. (2.1) with local momentum conservation would make the system behave as

a normal fluid at long distances. Here we are interested in systems where momentum is not

locally conserved, so that there are no other conserved densities besides ✏ and n which are

relevant in the hydrodynamic limit. In a physical system, momentum non-conservation may be

due to lattice umklapp scattering, or due to impurities. The transport of charge and heat at

long distances is then controlled by the transport coe�cients in Eq. (2.2).

For linear fluctuations in thermal equilibrium, one takes the coe�cients ⇧AB in Eq. (2.2)

to be constant. The conserved densities 'A ⌘ (�✏, �n) are related to the corresponding sources

�A ⌘ (�T/T, �µ� µ
T �T ) by the equilibrium susceptibility matrix

� =

0

B@
T

�
@✏
@T

�
µ/T

⇣
@✏
@µ

⌘

T

T

�
@n
@T

�
µ/T

⇣
@n
@µ

⌘

T

1

CA (2.3)

which is symmetric and positive-definite. These properties of � follow from the definition of

the thermodynamic derivatives in the grand canonical ensemble: �
11

is proportional to the

mean square energy fluctuation hE2i
conn

, while �
33

is proportional to the mean square charge

fluctuation hN2i
conn

(the subscript denotes the “connected” average hE2i � hEi2 etc). The

determinant of � is proportional to hE2i
conn

hN2i
conn

� hENi2
conn

which is non-negative by the

Schwarz inequality. We will assume a stable equilibrium state in which det� is strictly positive

and the di↵usion coe�cients (see below) are finite.

Fluctuations of the conserved densities are related to  A ⌘ (�T, �µ) by the matrix of

thermodynamic derivatives, 'A = XAB B. The conservation equations (2.1) combined with

the constitutive relations (2.2) can then be written as

@t'A = DABr2

'B , (2.4)

where the matrix of di↵usion constants is D = ⇧X�1, with

⇧ ⌘
 
⇧

11

⇧
12

⇧
21

⇧
22

!
, X ⌘

0

@
@✏
@T

@✏
@µ

@n
@T

@n
@µ

1

A
. (2.5)

The partial derivatives are at fixed T or µ, unless otherwise specified, and T detX = det� > 0.

Following the standard linear response theory [6], the retarded functions of energy density and

charge density G

R
AB = h'A'Bi are given by

G

R(!,k) = (1+ i!K

�1)� , (2.6)

where K ⌘ �i!1+Dk

2, suppressing the matrix indices. Time-reversal invariance requires that

G

R
✏n(!,k) = G

R
n✏(!,�k), which gives the Onsager relation

⇧
12

= T ⇧
21

+ µ⇧
22

. (2.7)

2

Conservation of energy and particle number:

Constitutive relations:

Onsager relation gives one constraint: Π12 = T Π21 + μ Π22    

4−1=3 transport coef-s: 2 diffusion constants, 1 “Hall-like”



Particle and heat diffusion

Transport coef-s depend on temperature and density, ΠAB(T,μ)  

Hence non-linear coupling of fluctuations, e.g.
�j✏ = . . .r�T + . . .r�µ+ . . . �T r�T + . . . �µr�T + . . . �T r�µ+ . . . �µr�µ

One-loop statistical fluctuations renormalize naive particle  
and heat diffusion constants D1, D2 of linear response:

(D1 +D2) = (Db
1 +Db

2) +
⇤DCD

(Db
1 +Db

2)

naive diffusion constants  
of linear response

thermodynamic  
derivatives of ΠAB(T,μ), 
positive constant

PK, 1407.0690

https://arxiv.org/abs/1407.0690


Particle and heat diffusion

Small (D1+D2) implies large corrections to (D1+D2). 
Thus fluctuations are mandatory for transport with small 
diffusion constants. 

Gradient coupling of fluctuations between energy and  
particle density softens the IR behavior, but the derivative 
expansion of diffusion still breaks down. 

Function (D + 1/D) has a minimum, depends on Λ. 
Implies a lower bound on D.



A better way to treat fluctuations

Stochastic hydrodynamics is a phenomenological model 

Can be recast as a field theory (MSR) with an action 

Can do in a relativistic covariant way, couple to gravity 

Still have to answer:  
  - Go beyond Gaussian noise in a systematic way? 
  - Derivative expansion and field redefinitions? 
  - Full set of transport coefficients? 
  - Access all possible n-point correlation functions? 
  - How to calculate in practice (discretization ambiguity)?

PK, Moore, Romatschke, 1405.3967

https://arxiv.org/abs/1405.3967


A better way to treat fluctuations

A modern version of the MSR theory is being developed, 
using the Schwinger-Keldysh formalism from the Wilsonian 
effective field theory point of view Haehl, Loganayagam, Rangamani 

1511.07809, 1701.07896, 1803.11155

Crossley, Glorioso, Liu 1511.03646,  
1701.07817, 1805.09331

Jensen, Pinzani-Fokeeva, Yarom 
1701.07436, 1804.04654

Can couple to covariant Schwinger-Keldysh sources, do 
the derivative expansion, classify transport coefficients  
in the effective action 

Stochastic hydro emerges as a certain limit of the SK action

https://arxiv.org/abs/1511.07809
https://arxiv.org/abs/1701.07896
https://arxiv.org/abs/1803.11155
https://arxiv.org/abs/1511.03646
https://arxiv.org/abs/1701.07817
https://arxiv.org/abs/1805.09331
https://arxiv.org/abs/1701.07436
https://arxiv.org/abs/1804.04654


A more modern view

Q: What is a transport coefficient? 

A: A parameter in the Schwinger-Keldysh hydrodynamic 
effective action. The SK action sits in the path integral over 
the effective degrees of freedom which describes both 
thermal and quantum fluctuations.



Main question

Small transport coefficients such as small η/s imply that the 
effective theory is strongly coupled. 

Euclidean strongly coupled theories can be defined on the 
lattice, and the path integral can be evaluated numerically. 
Real-time effective theories - not clear. 

Holography throws away relevant physics by taking N→∞. 

Unless we are at N=∞, it is not even clear what it means to 
talk about “small transport coefficients” because there is 
no quantitative framework to describe their contribution to 
transport.



My view

Q: What is a transport coefficient? 

A: If it is a DC transport coefficient which is “small” or close 
to a “quantum bound”, I have no idea what the question 
even means.



Conclusions

When transport coefficients are small, thermal fluctuation 
effects are large.  

The quantitative framework to describe hydrodynamic 
transport with small viscosity and/or diffusion constant is 
missing.


