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This talk i1s about thermal physics

Work In 3+1 or 2+1 dimensions



Old-fashioned view

System is in some state, e.g. equilibrium at temperature T

Apply external source, e.g. electric tield E

Measure the response, e.g. current J

Extract transport coefficients by fitting the response to the
constitutive relation, e.g. J=cE, Ohm’s law



For DC transport, w—0

Note w—0 and T—0 do not necessarily commute.

If calculate DC transport at T=0, this means kT « Aw — O.

This is “guantum” regime, physics of the ground state.

If calculate DC transport at T=0, this means kT » Aw — O.

This is “hydrodynamic” regime, physics of the thermal state.



Example: a toy model in 2+1 dimensions

A certain strongly interacting scale-invariant guantum
system without quasiparticles, can compute o(w) using
"holographic” methods:
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Hartnoll, 0903.3246



https://arxiv.org/abs/0903.3246

How does one compute o(w)?

When have quasiparticles and weak coupling A—0, can
use Boltzmann equation.

For some systems with no quasiparticles, with strong
coupling A= and many species N—co, can use
holographic methods.

Not all physical systems are well described by quasi-
particles, and certainly the real world does not have N=oo.

To make things worse, N—« and w—0 do not commute.
In holography one always takes N—co first.



Hydrodynamics

Universal approach at hw«kT, does not care whether A is
small or large, whether N is finite or infinite

Defines what you mean by a transport coefticient, through
the constitutive relations such as J=0E

Formulated as classical partial differential equations, so
“easy” to solve: no path integrals, no Monte-Carlo



Transport coefficients in hydrodynamics

Variations with respect to the external source give retarded
correlation functions of observable quantities

Transport coefficients can be expressed through Kubo
formulas, e.g.
1

o(w) = ;Im(Jxefet'(w,q:O)

These may be evaluated from ftirst principles, connecting
phenomenological hydrodynamics to microscopic physics



Old-fashioned view

Q: What is a transport coefficient?

A: A parameter In the hydrodynamic equations. The
connection with microscopics is through the Kubo formulas.



How to count transport coefficients

Hydrodynamic equations are written as a gradient
expansion near local thermal equilibrium.

However simply writing down all possible terms with a given
number of derivatives with a given symmetry is not enough.

Not all transport coefficients are independent: constraints
come from field redetinitions, Onsager relations, consis-
tency of thermodynamics, positivity of entropy production.



A simple example: diffusion

One degree of freedom ¢, for example @=06T.

Op — DV 2 + [terms with more derivatives of o] = 0

Diffusion at leading order, oi~V2~¢ is small. One transport
coefficient D at O(e).



A simple example: diffusion

[8,590 — DVQQO} -+ [Toﬁtzgp + DT OV + szvzgo} +0(e’) =0

Looks like three transport coefficients 1o, 11, at O(e?).

Eigenmodes:
w=—iDK* — i [[ + D*(ro+7)| K* + O(k%), w=-——+ 0K

70

Naively, must have D>0 and 1o>0 for stability.



A simple example: diffusion

However, can also work with ¥ = ¢ + adip + BDV?p = ¢ + O(e)
The field | obeys same equation as ¢, but with

TO — T — O, n—1+a—0, F—)F—I—ﬁDQ.

SO To may be redefined away and is not a transport
coefficient. The only transport coefficient at O(e?) is

[ 4+ D? (To+71)

which IS invariant under the above redefinitions. The
instability at To<O can be removed by a field redefinition.



Another example: relativistic hydrodynamics

Relativistic hydrodynamic equations as written in the text-
books by Landau & Lifshitz (Fluid Mechanics) or by
Weinberg (Gravitation and Cosmology)

a) predict that thermal equilibrium does not exist

D) predict that things propagate taster than light

Hiscock, Lindblom, 1984
Hiscock, Lindblom, 1987



https://doi.org/10.1103/PhysRevD.31.725
https://doi.org/10.1103/PhysRevD.35.3723

Another example: relativistic hydrodynamics

One can mess with the equations by coupling them to
extra degrees of freedom that take care of stability and
causality (Israel-Stewart theory). This is what is used Iin
poractice If you actually want to solve the equations.

Note however that in hydrodynamics the quantities T, v, |
have no microscopic definitions out of equilibrium and can
be redefined, just like In the above example of ditfusion.

Landau & Lifshitz choose one definition, Eckart/Weinberg
choose another. One can adopt other definitions such that
the problems with causality and instability go away, just like

iNn the above example of diffusion.

Freistuhler, Temple, 2014
Bemfica, Disconzi, Noronha, 1708.06255



https://arxiv.org/abs/1708.06255

Another example: relativistic hydrodynamics

For fluids whose only conserved quantites are energy and
momentum in 3+1 dim, there are

2 transport coefficients at O(0)
10 transport coefficients at O(02)

more transport coefficients at O(03)



Hydrodynamics is great and has been around for
many years. However, there are Issues.



Hydrodynamics contains its own demise

Conventional hydrodynamics assumes locality

Hence the derivative expansion is local, e.g.
Ti=0O(1) + O0) + O(02) + ...

\ \ \' ABCDEFG... eq-s

Euler eg-s Navier-Stokes eqg-s

But hydrodynamic equations predict gapless modes, e.g.
sound waves with w=vsk + ...

Gapless modes mediate long-range correlations and may
lead to a breakdown of |locality.



Hydrodynamics contains its own demise

Thus the existence of sound may imply non-local
correlations.

Correlations give rise to transport coefficients, through
the Kubo formulas.

Thus the existence of sound may imply non-existence
of transport coefficients.
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So let us look at transport coefticients
IN hydrodynamics in more detall



Example: viscosity

/ Momentum transfer

|y X /4 between layers of fluid,

\ Txy =N any + 0(82)
/ <T:EyT:13y>ret. = p— an i O(w2)

In a gas (A—0) In holography (N—oco, A—o0)

N =P Vih €mip ~ 1/A2 oo N = /41 ~ N2 =00




Example: viscosity

Momentum can also be

|y s § transtered by collective
X excitations.
W In a gas of sound/shear
Waves:
NN po ]
mip
=
A AT in D=3
Contribution / D}, T s in D=
to viscosity: k2~

IR divergent in D=2



Example: viscosity

* This is the physics of thermal

§ fluctuations. It is invisible if

nydrodynamics is viewed
just as a collection of partial
differential eqguations.

* |f you think n/s can be
arbitrarily small, think again.

* (Classical hydrodynamics
may be irrelevant to physics
N 2+1 dimensions.



How does one describe these effects quantitatively?



Stochastic hydrodynamics

A toy model for thermal fluctuations: ondau & Lifshits

Statistical Physics Part I/
ij __ ot .
T =T . (L,0,0T,0v,...)+ T
Gaussian noise (7i; (2)Tri(y)) = 2T Gk 0(x—Yy)

appropriate projector with viscosities, to satisty FDT in equilibrium

Energy-momentum conservation = §v* = §v'[r], 6T = §T7]

Get 6T &T), dvi dviy, (Ti Tk, Kubo formulas



Stochastic hydrodynamics

™~

leading non-linear,

linear . higher order
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Example: viscosity in 3+1 dimensions

, 17T?A w372
<TazyTa:y>R =D+ O(AST) —ww (77 | 1207T277/8> +0 (( ) + O(WQ)

PK, Yaffe, hep-th/0303010
PK, Moore, Romatschke, 1104.1586

This is “one-loop” fluctuation correction to (Txy Txy)

Actual physical viscosity includes all such corrections,
but no way to compute them all in practice

Holography is useless here because it takes N—


https://arxiv.org/abs/1104.1586
https://arxiv.org/abs/hep-th/0303010

Example: viscosity in 3+1 dimensions

, 17T?A w3/2
<TazyTa:y>R =D+ O(AST) —ww (77 | 1207T277/8> +0 <( ) + O(WQ)

As expected, small n/s implies large corrections to n/s.
So fluctuations are mandatory tor small-viscosity physics.

Relevant for the quark-gluon plasma PK, Moore, Romatschke 1104.1586

: : Chafin, Schaefer, 1209.1006
and Unltary Ferml gases' Romatschke, Young, 1209.1604

Function (n + 1/n) has a minimum, implies a lower bound
on n. Hydro of QGP with n/s = 1/4m appears inconsistent,

regardleSS Of the experiment' PK, Moore, Romatschke 1104.1586

Fluctuations are more important than 2-nd order hydro.


https://arxiv.org/abs/1209.1006
https://arxiv.org/abs/1209.1604
https://arxiv.org/abs/1104.1586
https://arxiv.org/abs/1104.1586

Analogy with quantum gravity

Thermal fluctuations THY — THY L THY | THY
are more im ‘! (0) (1) (2)
portant

than higher-derivative / \ T

hydrodynamics: Gy aoy(w) = O0(1) + O(w) + O(W3?) + O(w?) + ...

Quantum fluctuations ) ,
are more important S = /d T {1677GR+ ciR*+coRY R, + .. }

than higher-derivative
gravity: / \ \

mo ~ (C,L-G)_l/2 Classical: Stelle 1978
Quantum: Bjerrum-Bohr, Donoghue, Holstein, 2002



http://dx.doi.org/10.1007/BF00760427
http://arxiv.org/abs/hep-th/0211072

Hydrodynamics in 2+1 dimensions

Same one-loop diagram gives: N=No+O(Inw), 0=00+0O(InW)
(scale-invariant theory, u=0)

o0 = charge conductivity,
related to diffusion constant D=0y,
X = charge susceptibility

Scale-dependent
transport coef-s:  n(A) =n(w=A), () =o(w=A), g, =n/s, go =0T/x

Physical objects (correlation functions) can not depend on the
arbitrary scale A, hence RG equations:
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Hydrodynamics in 2+1 dimensions

 Both n/s and oT/x become large
as w—O0.

e “fixed line” as w—0:
ol
X

il
S

/

PK, 1205.5040

n
S

Viscosity and charge conductivity are not independent
transport coefficients in 2+1 dimensions


https://arxiv.org/abs/1205.5040

What is the small parameter?

Simplest case: scale-invariant uncharged relativistic fluid.
The only dimensiontul quantities are T, s, n.

The only dimensionless combination in natural units c=1 Is
T/Sl/D
e

Jeff =

Fluctuation correction to n is proportional to Qett.
“Coupling constant” gert iIs small at weak coupling or large N.

“Coupling constant” gest is large when n/s is small.



This was hydrodynamics with conserved momentum.
Same thing happens for purely diffusive transport.



Particle and heat diffusion

Conservation of energy and particle number:

8te -+ VJG — O, 5’tn -+ VJn = (

Constitutive relations:

je — _H11VT_H12V/L‘|‘--. ] Jn = —H21VT—H22V,M—|—...

Onsager relation gives one constraint: 2 = T 21 + p oo

4—-1=3 transport coef-s: 2 diffusion constants, 1 “Rall-like”



Particle and heat diffusion

Transport coef-s depend on temperature and density, Ias(T,Y)

Hence non-linear coupling of fluctuations, e.g.
0Je = ... VoI' + ... Vou+...0T'VoT'+...ouVoT' + ...0T'Vou+...ouVou

One-loop statistical fluctuations renormalize naive particle
and heat diffusion constants D+, D2 of linear response:

T
APCp

thermodynamic
derivatives of I'ag(T,y),
Db + Db) positive constant

[ —

naive diffusion constants
of linear response

(D1 4+ Dy) = (Db + DY) +

PK, 1407/.0690



https://arxiv.org/abs/1407.0690

Particle and heat diffusion

Small (D1+D2) implies large corrections to (D1+D>).
Thus fluctuations are mandatory tor transport with small
diffusion constants.

Gradient coupling of fluctuations between energy and
particle density softens the IR behavior, but the derivative
expansion of diffusion still breaks down.

Function (D + 1/D) has a minimum, depends on A.
Implies a lower bound on D.



A better way to treat fluctuations

Stochastic hydrodynamics is a

Can be recast as a field theory

phenomenological model

(MSR) with an action

Can do in a relativistic covariant way, couple to gravity

Still have to answer:
- Go beyond Gaussian noise |
- Derivative expansion and fie
- Full set of transport coefficie

PK, Moore, Romatschke, 1405.3967

N a systematic way”
d redefinitions”

Nts?

- Access all possible n-point correlation functions”

- How to calculate in practice

(discretization ambiguity)?


https://arxiv.org/abs/1405.3967

A better way to treat fluctuations

A modern version of the MSR theory is being developed,
using the Schwinger-Keldysh formalism from the Wilsonian

effeCtlve f|e|d theOry pOIﬂt Of V|eW Haehl, Loganayagam, Rangamani
1511.07809, 1/01.0/896, 1803.11155

Crossley, Glorioso, Liu 1511.03646,
1701.07817, 1805.09331

Jensen, Pinzani-Fokeeva, Yarom
1701.07436, 1804.04654

Can couple to covariant Schwinger-Keldysh sources, do
the derivative expansion, classity transport coefficients
in the effective action

Stochastic hydro emerges as a certain limit of the SK action


https://arxiv.org/abs/1511.07809
https://arxiv.org/abs/1701.07896
https://arxiv.org/abs/1803.11155
https://arxiv.org/abs/1511.03646
https://arxiv.org/abs/1701.07817
https://arxiv.org/abs/1805.09331
https://arxiv.org/abs/1701.07436
https://arxiv.org/abs/1804.04654

A more modern view

Q: What is a transport coefficient?

A: A parameter in the Schwinger-Keldysh hydrodynamic
effective action. The SK action sits in the path integral over
the etfective degrees of freedom which describes both
thermal and quantum fluctuations.



Main guestion

Small transport coefticients such as small n/s imply that the
effective theory is strongly coupled.

—uclidean strongly coupled theories can be defined on the
attice, and the path integral can be evaluated numerically.
Real-time eftfective theories - not clear.

Holography throws away relevant physics by taking N—co.

Unless we are at N=oo, it IS not even clear what it means to
talk about “small transport coetticients” because there is
Nno quantitative framework to describe their contribution to

fransport.



My view

Q: What is a transport coefficient?

A: It it is a DC transport coefticient which is “small” or close
to a "quantum bound”, | have no idea what the guestion

even means.



Conclusions

When transport coefficients are small, thermal fluctuation
effects are large.

The quantitative framework to describe hydrodynamic
transport with small viscosity and/or diffusion constant is
missing.



