Electron Hydrodynamics and Hall Viscosity

Thomas Scaffidi

UC Berkeley

Nordita August 2018

[Scaffidi, Nandi, Schmidt, Mackenzie, and Moore, Phys. Rev. Lett. 118, 226601]

GORDON AND BETTY MOORE FOUNDATION

Acknowledgements

- UC Berkeley: Joel Moore
- MPI Dresden: Nabhanila Nandi, Burkhard Schmidt, Philip Moll, Pallavi Kushwaha, Andrew Mackenzie

Could it finally be true?

Metal versus water

Electrons in a metal

 Resistance arises through "extrinsic" processes due to the lattice: impurities, phonons, umklapp,...

Water in a pipe

• Resistance arises through an "intrinsic" process: viscosity

Metal versus water

Electrons in a metal

• Resistance arises through "extrinsic" processes due to the lattice: impurities, phonons, umklapp,...

Water in a pipe

 Resistance arises through an "intrinsic" process: viscosity

Conventional metallic transport [Drude 1900]

Mean free time of electrons, set by defects and vibrations of the lattice

Electron-electron scattering⁵ plays a relatively minor role in the theory of conduction in solids, for reasons to be described in Chapter 17.

Metal versus water

Electrons in a metal

• Resistance arises through "extrinsic" processes due to the lattice: impurities, phonons, umklapp,...

 Resistance arises through an "intrinsic" process: viscosity

Hydrodynamics

- Universal description of fluids based on conserved quantities: momentum, energy, charge,...
- Applications in nearly all fields of physics
- Works at length/time scales much larger than the microscopic ones
- The more interacting, the better!

Viscous fluid

Hydrodynamic flow of electrons possible if...

Momentum-conserving mean free path

• Normal e-e

Momentum-relaxing mean free path:

- Impurities
- Phonons

[Gurzhi 1963] [Spivak, Kivelson 2006] [Hruska, Spivak 2011] [Andreev Kivelson Spivak 2011] [Torre,Tomadin,Geim,Spivak 2011] [Levitov Falkovich 2016] many more papers...

Ohmic

Viscous

 $l_{MC} \ll W \ll l_{MR}$

Diffuse-Ballistic

$$W \ll l_{MR}, l_{MC}$$

"Knudsen flow"

Electron hydro - Why is it interesting?

• New regime of transport

$$\vec{j} = \sigma \vec{E}$$
 $\eta \nabla^2 \vec{j} = -\frac{e^2 n}{m} \vec{E}$

• Realize "exotic" hydro in the lab:

For electrons in a solid:
$$H = \frac{P^2}{2m}$$
 $H(\mathbf{k})\psi(\mathbf{k}) = E(\mathbf{k})\psi(\mathbf{k})$

• First step towards transport in unconventional metals?

Outline

- Electron hydrodynamics What and why?
- Viscous Fermi liquids
- Using magnetic fields to detect viscous effects
- Conclusion and outlook

Viscous fluid

Viscous electronic fluid

Microscopics

Hydrodynamics

W

 $\vec{j} = n e \vec{v}$

"Viscous electronics" $\vec{j} \neq \sigma \vec{E}$

• Non-local relation between current and electric field can lead to many interesting effects:

Viscous Hall effect

Higher-than-ballistic conduction

[Levitov, Falkovich, Nature Physics '15]

[Guo et al, PNAS '17] [Krishna Kumar et al, Nature Physics '17]

[TS et al, PRL '17]

Where did the convection term go?

Outline

- Electron hydrodynamics What and why?
- Electron hydrodynamics in good metals
- Using magnetic fields to detect hydro effects
- Conclusion and outlook

[TS et al, PRL '17]

How to identify hydro effects?

- Idea: Look at finite size corrections to transport coefficients
- Problem: how to distinguish from ballistic effects?
- Solution: use magnetic field

Navier-Stokes under magnetic field

Hydrodynamic solution [TS et al, PRL '17]

1

$$\partial_t \vec{v} = \eta_{xx} \nabla^2 \vec{v} + \eta_{xy} \nabla^2 \vec{v} \times \vec{z} + \frac{e}{m} (\vec{E} + \vec{v} \times \vec{B}) - \frac{1}{\tau_{MR}} \vec{v}$$

$$\rho_{xx} \simeq \rho_{xx}^{bulk} + \frac{m}{e^2 n} \eta_{xx} \frac{12}{W^2}$$
$$\rho_{xx}^{bulk} = \frac{m}{e^2 n} \frac{1}{\tau_{MR}}$$

Result from Boltzmann theory for a charged Fermi liquid:

$$\eta_{xx}(B) \sim \eta_{xx}(B=0) \frac{1}{1 + (B/B_0)^2}$$

Navier-Stokes is not enough

In theory:

$$l_{MC} \ll W \ll l_{MR}$$

Navier-Stokes

In practice:

$$l_{MC} \lesssim W \lesssim l_{MR}$$

$$f\left(ec{r},ec{k}
ight)$$
 : quasi-particle density

$$\partial_t f + \vec{v} \cdot \nabla_{\vec{r}} f + \frac{e}{m} (\vec{E} + \vec{v} \times \vec{B}) \cdot \nabla_{\vec{v}} f = -\frac{1}{\tau_{MR}} f - \frac{1}{\tau_{MC}} I[f]$$

Non-uniform current density

Lorentz force

Momentumrelaxing scattering Momentumconserving scattering

+ boundary condition for diffuse scattering at the boundaries

Results of Boltzmann-hydro: magnetoresistance

Preliminary results for PdCoO2

Experiment:

Theory:

[Nandi, TS, Moore, Mackenzie, to appear (2018)]

Historical perspective on Hall effects

B

[TS et al, PRL '17]

$$\begin{array}{l} \text{Hall resistivity} => \text{Hall viscosity} \\ \hline 1 & w & \otimes B \\ \partial_t \vec{v} = \eta_{xx} \nabla^2 \vec{v} + \eta_{xy} \nabla^2 \vec{v} \times \vec{z} + \frac{e}{m} (\vec{E} + \vec{v} \times \vec{B}) \end{array}$$

$$\rho_{xy} = \rho_{xy}^{bulk} \left(1 - \eta_{xy} \frac{12}{W^2} \frac{1}{\omega_c} \right) \qquad \qquad \rho_{xy}^{bulk} = \frac{B}{ne}$$

Hall viscosity could be measured by looking at finite-size effects in Hall resistivity

Nicer probe than ho_{xx} , because bulk value is "universal"

[TS et al, PRL '17]

Hall voltage

Results of kinetic theory: Hall resistivity (normalized by bulk value)

$$\rho_{xy} = \rho_{xy}^{bulk} \left(1 - \eta_{xy} \frac{12}{W^2} \frac{1}{\omega_c} \right)$$

Experimental results

[Nabhanila Nandi, Andrew Mackenzie]

Theory

Experiment: PdCoO₂75 K

Experimental results: see also

Measuring Hall Viscosity of Graphene's Electron Fluid

A. I. Berdyugin, S. G. Xu, F. M. D. Pellegrino, R. Krishna Kumar, A. Principi, I. Torre, M. Ben Shalom, T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini, A. K. Geim, D. A. Bandurin

arXiv:1806.01606

(Submitted on 5 Jun 2018)

Conclusion

• Unlike for many other physical systems where you get it for free, reaching a hydro regime for electrons in a solid is difficult. One is always between a rock and a hard place:

• Size-dependent magnetotransport provides good signatures of hydro

$$ho_{xx}$$
 — Shear viscosity

$$ho_{xy}$$
 — Hall viscosity

Acknowledgements

- UC Berkeley: Joel Moore
- MPI Dresden: Nabhanila Nandi, Burkhard Schmidt, Philip Moll, Pallavi Kushwaha, Andrew Mackenzie

Thanks for your attention!