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Quantum critical metal

e Describes the phenomenon where the critical fluctuations associated
with a quantum critical point is coupled to itinerant electrons (i.e., a
Fermi surface)

e Examples include antiferromagnetism, nematicity, charge order ...

e Commonly observed in high Tc superconductors (cuprates and iron
pnictides/chalcogenides)

Less understood are transport properties

e quasiparticle (Boltzmann) vs. non g.p. (memory matrix, holography)
* Even in Boltzmann, transport lifetime different from q.p. lifetime
e Mechanism for current relaxation

e disorder; Umklapp

* compensated metal
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What is an electronic nematic phase?

e Electrons spontaneously break e Arises as vestigial or a
rotational symmetry w.r.t. z-axis principle phase
e isotropic -> U(1) e charge/spin density wave
e tetragonal (square lattice) e Pomeranchuk instability (I=2)
-> /o (Ising)
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e Hertz-Millis theory
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e Integrate out fermions; study Gaussian fluctuations

non-universal

thermalljx 2

e /
. quantum critical

disordered h 7

;' quantum

/ .
ordered \ disordered

Lohneysen et al., RMP 07

e “Quantum critical fan”:
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Fermions cannot be integrated out !

e Feedback of critical bosons on
fermions

Y X(w) ~ i sign(w) | w |2/ >
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Metlitski & Sachdev, PRB ‘10

e | ow-energy physics described by non-Fermi liquid coupled to
Landau damped critical fluctuations



What about transport properties?

* The model can be studied using QMC without fermion sign problem!
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What regime are we in?
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* Despite strong coupling, FS smearing ~ 7% < E,,

e Some form of extended Boltzmann equation should work

* argument similar to why kinetic theory works for lattice SYK model, cf. Avishkar Patel & Subir Sachdev



What regime are we in? : Q. Q2

v
G lk,w) =w- & — 1 sign(a))—F |y |2/3
Ny

o either A?/vp <1 or Ny>1

* Parametrically large temperature
regime governed by extended
Boltzmann transport

Q <T<Q, <K Ep

* where Landau damping entails
complicated multi-particle scattering
process, but electrons are coherent

Transport in NFL regime: work in progress!
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Memory matrix approach

e Memory matrix approach is about identifying “slow operators”

Given a set of slow operators :{A,B,C, ...}
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e Example: weak impurity scattering
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Patching the Fermi surface

* Typical nemato-electronic scattering has
D¢ ~q —i— Q~T, g~T"

e “Patching” the Fermi surface
* slow inter-patch relaxation
e small Lorenz number Metzner, Fradkin, Haldane, Hartnoll ...

e Set of slow operators {n;|n; = | dk ny}

* Memory matrix describes collision integral
Im??%ﬁ]y(a)) |
My (w) = ” where n; = i[H, n;]
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e Conductivity J~ 4; o Why not isolate out current and momentum?
k
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Typically only class | diagram considered, (wrongly) leading to momentum relaxation

Del’Anna & Metzner, PRL '07



* All odd harmonics develop non-zero
relaxation

* |n particular, momentum is no longer
conserved!
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* All odd harmonics develop non-zero

relaxation

* |n particular, momentum is no longer

conserved!

* Another interesting case is compensated metal,
where current and momentum have zero overlap
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e At sufficiently low T, p ~ T? from noncritical fluctuations (even at QCP)

Maslov, Yudson & Chubukov ‘11
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Conclusion

In quantum critical metals, there is a finite-temperature region
governed by extended Boltzmann transport

Memory matrix is a good approximation to calculating the
collision integral

Temperature dependence of the DC resistivity does not show
one particular power law scaling; smooth crossover from T2
at low-T to sub-linear at high-T

Compensated metal ( ¥jp — 0)?

Density wave QCPs that break translation symmetry?
Generalization to bad metal regime?

Connection to experiments?

Xiaoyu Wang and Erez Berg, in preparation



