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Quantum critical metal 

Less understood are transport properties 

• Describes the phenomenon where the critical fluctuations associated 
with a quantum critical point is coupled to itinerant electrons (i.e., a 
Fermi surface)

• Commonly observed in high Tc superconductors (cuprates and iron 
pnictides/chalcogenides)

• quasiparticle (Boltzmann) vs. non q.p. (memory matrix, holography)

• Even in Boltzmann, transport lifetime different from q.p. lifetime

• Mechanism for current relaxation

• disorder; Umklapp

• compensated metal

• Examples include antiferromagnetism, nematicity, charge order …



• Electrical transport properties near an Ising-nematic QCP 

• Extended Boltzmann approach (memory matrix with many 

slow operators)


• Temperature-dependent DC resistivity


• Summary & Outlook



• Electrons spontaneously break 
rotational symmetry w.r.t. z-axis

• isotropic -> U(1)

• tetragonal (square lattice) 

-> Z2 (Ising)

Kivelson, Fradkin & Emery, Nature ‘98
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transition from a smectic to an isotropic (symmetric) phase. As at
zero temperature, the smectic order is destroyed in a sequence of
two transitions: (1) a dislocation unbinding transition to an ‘‘Ising
nematic’’ phase18 which has short-range positional order but breaks
four-fold rotational symmetry, and (2) a transition to the isotropic
state. The superconducting Tc rises with ~q̄ through the smectic and
nematic phases, reflecting the enhancement of the Josephson
coupling, J, by transverse stripe fluctuations; it decreases at larger
~q̄ following the isotropic to nematic phase boundary, as we expect
that the stripes lose their local integrity far into the isotropic phase.
A further detail is that both the crystalline and smectic regions are
actually a series of commensurate phases at T ¼ 0, and a compli-
cated pattern of commensurate and incommensurate phases for
T fi 0. Whereas the commensurate smectic has true positional
long-range order, the incommensurate smectic will have only
power-law correlations, and there is no true broken translational
symmetry—only quasi-long-ranged positional order. If any of the
phase transitions were discontinuous (first-order), the character of
the phase diagram would change. An important and interesting
possibility is that C1 could be replaced by a line of first-order phase
transitions, extending to finite temperature in either the nematic or
isotropic regions of the phase diagram.

As mentioned above, crystals do not have the full rotational
symmetry of free space. A crystal field with two-fold symmetry
would change the nematic-to-isotropic phase transition into a
crossover, which nevertheless would be quite sharp if the field is
small. We note that our analysis could also be applied to systems
with low-energy spin degrees of freedom by considering the most
general model of the one-dimensional electron gas with or without
a charge gap10.

What are the experimental signatures of the electronic liquid-
crystal phases? The most direct would come from peaks in the static
and dynamic, spin and charge structure factors, measured by
neutron and X-ray scattering. Long-range order transverse to the
stripes is indicated by a Bragg peak for which the component, qx, of
the wavevector along the stripe direction is equal to zero. There are
additional peaks with qx fi 0 corresponding to CDWordering along
the stripes—Bragg peaks in the case of the crystalline phase, and
power-law singularities for the smectic. In practice, the latter may be

of low intensity and difficult to observe. However, the electrical
conductivity allows an unambiguous distinction to be made
between the insulating crystalline phase and the metallic smectic
phase. In the nematic phase near to the smectic phase boundary,
sharp peaks corresponding to smectic order with a long but finite
correlation length should also be observable in the static structure
factor. In addition, the electronic properties should be strongly
anisotropic, as this phase breaks four-fold rotational symmetry,
even in a nominally tetragonal material. This analysis is complicated
by the effects of quenched disorder, which always leads to a round-
ing of the Bragg peaks in two dimensions, even in the crystalline
phase.

There is strong direct experimental evidence of electronic liquid-
crystal phases in the copper oxide superconductors. Neutron-
scattering experiments by Tranquada et al.11,12 have found static
peaks, corresponding in incommensurate spin and charge stripe
order, in La1.6−xNd0.4SrxCuO4. The stripes are along the CuO
direction and the material is simultaneously a bulk superconductor.
The peaks have a small but finite width which is consistent
with a nematic stripe phase in an orientating potential. However,
because of the presence of quenched disorder in these materials,
the peaks could possibly arise from a disrupted smectic phase.
In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2−xSrxCuO4 there are similar incommensurate peaks in
the magnetic neutron-scattering factor at about the same position
in k-space, but they are inelastic13–16; that is, there are
dynamically fluctuating analogues of the stripe phases seen in
La1.6−xNd0.4SrxCuO4. Here the two-fold lattice potential is,
itself, dynamical. Neutron-scattering experiments on underdoped
YBa2Cu3O7−d also have found dynamical incommensurate peaks19,20,
corresponding to low-energy dynamical stripe fluctuations. M
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Figure 3 Schematic view of the local stripe order in the various phases discussed

in the text. Here, we have assumed that the stripes maintain their integrity

throughout, although in reality they must certainly become less and less well

defined as the system becomes increasingly quantum, until eventually they are

not the correct variables for describing the important correlations in the system.

Heavy lines represent liquid-like stripes, along which the electrons can flow,

whereas the filled circles represent pinned, density-wave order along the stripes.

The stripes are shown executing more or less harmonic oscillations in the

smectic phase. Two dislocations, which play an essential role in the smectic-to-

nematic phase transition, are shown in the view of the nematic phase.
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In this material, the orientation of the oxygen octahedra produces
a two-fold symmetry-breaking potential that drives the material
either into or close to the smectic phase, and freezes the dynamics.
In La2−xSrxCuO4 there are similar incommensurate peaks in
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Figure 3 Schematic view of the local stripe order in the various phases discussed

in the text. Here, we have assumed that the stripes maintain their integrity

throughout, although in reality they must certainly become less and less well

defined as the system becomes increasingly quantum, until eventually they are

not the correct variables for describing the important correlations in the system.

Heavy lines represent liquid-like stripes, along which the electrons can flow,

whereas the filled circles represent pinned, density-wave order along the stripes.

The stripes are shown executing more or less harmonic oscillations in the

smectic phase. Two dislocations, which play an essential role in the smectic-to-

nematic phase transition, are shown in the view of the nematic phase.

• Arises as vestigial or a 
principle phase

• charge/spin density wave

• Pomeranchuk instability (l=2)

What is an electronic nematic phase?



A toy model
• Hamiltonian with attractive interaction in the nematic channel

H = ∑
k

(εk − μ) c†
kck − U ∑

kk′�q
(fkc†

k− q
2
ck+ q

2 ) (fk′ �c†
k′�+ q

2
ck′�− q

2 )
fk = cos kx − cos ky• Ising nematic form factor

U/EF
-π 0 π

-π

0

π
-π 0 π

-π

0

π

-π 0 π
-π

0

π
-π 0 π

-π

0

π

• odd under 90-degree rotation



usual Fermi-liquid regime. For r!0 and T"Tc, but still
L#$ %#, we are in the “thermally disordered” regime;
here the order is destroyed by thermal fluctuations of
the ordered state !yet quasiparticles are still well defined
on intermediate scales". A completely different regime is
the high-temperature regime above the QCP where %#

$ L#. In this “quantum critical” regime, bounded by
crossover lines T#$r$&z, the critical singularity is cut off
by the finite temperature. The properties are deter-
mined by the unconventional excitation spectrum of the
quantum critical ground state, where quasiparticles of
the stable phases are replaced by a critical continuum of
excitations. In the quantum critical regime, this con-
tinuum is thermally excited, resulting in unconventional
power-law temperature dependencies of physical ob-
servables.

Assuming that the critical behavior is governed by %
and %#, the critical contribution to the free-energy den-
sity fcr= f− freg should follow the homogeneity law

fcr!r,T" = b−!d +z"fcr!rb1/&,Tbz" , !66"

where b is an arbitrary scale factor. Note that this naive
scaling !equivalent to hyperscaling" is valid only below
the upper critical dimension, d eff!d c

+, and we comment
on deviations later on. Choosing b=%, Eq. !66" can be
cast into the scaling form fcr=%−!d +z"'1!%# /L#", or, equiva-
lently, the ansatz

fcr = (0r&!d +z"'2!T/r&z" = (0T!d +z"/z'3 !r/T1/&z" , !67"

where T is measured in units of T0, T0, and (0 being
nonuniversal constants, while '1,2,3 !x" are universal scal-
ing functions.

From Eq. !67" we can immediately deduce the critical
contribution to the specific heat C=T!S/!T as

Ccr!r = 0,T" ) Td /z !68 "

in the quantum critical regime. If the quantum disor-
dered regime of Fig. 2 is a Fermi liquid, then Eq. !67"
yields for its specific-heat coefficient Ccr /T!T→0"
)r&!d −z".

As is clear from Fig. 2, a quantum critical point can be
generically approached in two different ways: r→0 at
T=0 or T→0 at r=0. The power-law behavior of physi-
cal observables in both cases can often be related. We
discuss this idea by looking at the entropy S. It goes to
zero at the QCP %exceptions are impurity transitions dis-
cussed in Sec. II.F.4 and by Vojta !2006a"&, but its deriva-
tives are singular. The specific heat C will show power-
law behavior, as does the observable B=!S/!r. At a
pressure-tuned phase transition r= !p−pc" /pc, B mea-
sures the thermal expansion,

* =
1
V
' !V

!T
'

p
= −

1
V
' !S

!p
'

T
. !69 "

B /C defines the Grüneisen parameter +,

+ =
*

Cp
= −

1
VmT

!!S/!p"T

!!S/!T"p
, !70"

where Vm=V /N the molar volume. Taking the ratio of
the singular parts of B and C one observes that the scal-
ing dimensions of T and S cancel, and therefore B /C
scales as the inverse of the tuning parameter r. Thus one
obtains a universal divergence in the low-T limit !Zhu,
Garst, et al., 2003 "

+cr!T = 0,r" = Bcr/Ccr = Gr$r$−1, !71"

+cr!T,r = 0" = GTT−1/!&z", !72"

With the help of the scaling ansatz !67" the full scaling
form of + can be determined; for details see Zhu, Garst,
et al. !2003 ". Remarkably, in the T→0 limit, even the
prefactor Gr is universal and given by a combination of
critical exponents. Further, we note that + does not di-
verge at a finite-T phase transition; thus a divergence of
+ is a unique signature of a continuous QPT.

If the control parameter of the QPT is not pressure
but an external magnetic field H, the quantity B is the T
derivative of the magnetization M, and the role of the
Grüneisen ratio is played by

+H = −
!!M/!T"H

cH
= −

1
T

!!S/!H"T

!!S/!T"H
=

1
T
' !T

!H
'

S
. !73 "

It can be determined directly from the magnetocaloric
effect by measuring the change of temperature in re-
sponse to an adiabatic !S=const" change of H.

As the scaling arguments can be invalid above the
upper critical dimension, we quote results for critical
points of metallic magnets in Sec. III.D.

We finally turn to dynamical scaling. Any physical
quantity depending on r and t !or equivalently k and ,"
in the critical region close to the QPT !but sufficiently
far from the associated finite-T transition" should de-

FIG. 2. Generic phase diagram in the vicinity of a continuous
quantum phase transition. The horizontal axis represents the
control parameter r used to tune the system through the QPT;
the vertical axis is the temperature T. Dashed lines indicate the
boundaries of the quantum critical region. Lower crossover
lines are given by T) $r$&z; the high-temperature crossover to
nonuniversal !lattice" physics occurs when the correlation
length is no longer large to microscopic length scales. The solid
line marks the finite-temperature boundary between the or-
dered and disordered phases. Close to this line, the critical
behavior is classical.

1029Löhneysen et al.: Fermi-liquid instabilities at magnetic …
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• “Quantum critical fan”: 
characteristic energy 
scale smaller than kBT

• Hertz-Millis theory

HU ⇒ − ∑
q

|ϕq |2

2U
+ ∑

kq

ϕq (fkc†
k− q

2
ck+ q

2 )

• Landau damping

D−1
ϕ ∼ r + q2 − i

γΩ
|q |

• Dynamical critical exponent
ξτ ∼ ξz; ξ ∼ |r |−ν

• Integrate out fermions; study Gaussian fluctuations



• Feedback of critical bosons on 
fermions

Σ(ω) ∼ i sign(ω) |ω |2/3

Metlitski & Sachdev, PRB ‘10

• Low-energy physics described by non-Fermi liquid coupled to 
Landau damped critical fluctuations

• Fermions cannot be integrated out !

G(k, ω) =
1

ω − εk − Σ(ω)



What about transport properties?

“Resistivity proxy”: !" ≡ $%&'()/+)
+-'&()/+) ≈

∫ 01	1&3 14
5
6 ∫ 013 14

5
&

Lederer, Schattner, Berg & Kivelson, PNAS ‘17

!"
!"

ℏ/%&

• The model can be studied using QMC without fermion sign problem!



Lederer, Schattner, Berg & Kivelson, PNAS ‘17

A(k, ω)
What regime are we in?

• Some form of extended Boltzmann equation should work

* argument similar to why kinetic theory works for lattice SYK model, cf. Avishkar Patel & Subir Sachdev

• Despite strong coupling, FS smearing ∼ Tα ≪ EF



Ω

z = 1; Wilson − Fisher

Ωb ∼
Nf λc3/2

vF

Ωf ∼
λ4

Nf vF

z = 3; Landau damping

NFL; Σ(ω) ∼ |ω |2/3Tc ∼ Ωf

What regime are we in?
D−1

ϕ ∼ r + q2 − i
γΩ
|q |

−
Ω2

c2

G−1(k, ω) = ω − εk − i sign(ω)
vF

Nf
|γω |2/3

Ωf < T < Ωb ≪ EF

• Parametrically large temperature 
regime governed by extended 
Boltzmann transport

λ2/vF ≪ 1• either                   or Nf ≫ 1

• where Landau damping entails 
complicated multi-particle scattering 
process, but electrons are coherent

Transport in NFL regime: work in progress!



• Electrical transport properties near an Ising-nematic QCP


• Extended Boltzmann approach (memory matrix with many 

slow operators) 

• Temperature-dependent DC resistivity


• Summary & Outlook



Memory matrix approach
• Memory matrix approach is about identifying “slow operators”

Hartnoll, Lucas & Sachdev, Holographic Quantum Matter 

Given a set of slow operators :{A, B, C, …}

In linear response : ΦAB(ω) ≈ ∑
CD

χAC ( 1
M(ω) − iωχ )

CD
χDB

where MCD(ω) =
Im𝒢R·C ·D(ω)

ω

• Example: weak impurity scattering

{J, P}

σJJ(ω) ≈
χ2

JP

MPP − iωχPP
MPP(ω) ∼ h2

0 ∫q
q2

x
Im𝒢R

OO(q, ω)
ω

·P = ∫r
h(r)∇O(r)



Patching the Fermi surface

-π 0 π
-π

0

π
-π 0 π

-π

0

π
⋯

θ1

θ2
θ3

• “Patching” the Fermi surface

• slow inter-patch relaxation

• small Lorenz number

• Set of slow operators {n ̂k |n ̂k ≡ ∫ dk⊥nk}
• Memory matrix describes collision integral

M ̂k ̂k′�(ω) =
Im𝒢R·n ̂k

·n ̂k′ �
(ω)

ω
where ·n ̂k = i[H, n ̂k]

• Conductivity J ≈ ∮ ̂k
v ̂kn ̂k

σJJ(ω) ≈ ∮ ̂k ̂k′�
(v ̂k ⋅ v ̂k′�)Φ ̂k ̂k′�(ω); where Φ ̂k ̂k′�(ω) ≈ ∮ ̂k1

̂k2

χ ̂k ̂k1 ( 1
M − iωχ ) ̂k1

̂k2

χ ̂k2
̂k′�

• Typical nemato-electronic scattering has

Ω ∼ T; q ∼ T1/zD−1
ϕ ∼ q2 − i

γΩ
|q |

Metzner, Fradkin, Haldane, Hartnoll …

Why not isolate out current and momentum?



Memory matrix

• Two class of processes under RPA

Class II

-π 0 π
-π

0

π
-π 0 π

-π

0

π

k k′ �

q = k − k′�

-π 0 π
-π

0

π
-π 0 π

-π

0

π
k

k′ �

−k′�
−k

q = k + k′�
Class I

-π 0 π
-π

0

π
-π 0 π

-π

0

π

k k′�

ImDϕ(q, Ω)

• Two low-energy degrees of freedom

• critical nematic fluctuations + electrons near FS



M ̂k ̂k′ �(ω → 0)

-π 0 π
-π

0

π
-π 0 π

-π

0

π
⋯

θ1

θ2
θ3

head-onmomentum exchange



• 2D electron system without impurity or Umklapp, all odd angular 
harmonics are conserved

Ledwith, Guo, Shytov & Levitov, arXiv:1708.02376

Memory matrix structure

• In our language:

M(1)
̂k ̂k′�

= − 2M(2,+)
̂k ̂k′ �

= 2M(2,−)
̂k,− ̂k′�

• s.t.
M tot

̂k ̂k′�
=

1
2 (M(1)

̂k ̂k′�
+ M(1)

̂k,− ̂k′�)

-π 0 π
-π

0

π
-π 0 π

-π

0

π

k k′�

-π 0 π
-π

0

π
-π 0 π

-π

0

π

k

k′�

−k′�
−k

-π 0 π
-π

0

π
-π 0 π

-π

0

π

k k′�

Typically only class I diagram considered, (wrongly) leading to momentum relaxation

Dell’Anna & Metzner, PRL ’07



Weak random disorder

• All odd harmonics develop non-zero 
relaxation


• In particular, momentum is no longer 
conserved!

-π 0 π
-π

0

π
-π 0 π

-π

0

π



Umklapp

!"

• All odd harmonics develop non-zero 
relaxation


• In particular, momentum is no longer 
conserved!

* Another interesting case is compensated metal, 
where current and momentum have zero overlap



• Electrical transport properties near an Ising-nematic QCP


• Extended Boltzmann approach (memory matrix with many 

slow operators)


• Temperature-dependent DC resistivity 

• Summary & Outlook



• Weak random disorder adds a constant resistivity

• sanity check!

DC resistivity

• Umklapp scattering gives rise to strong T-dependence, smooth 
crossover from T2 at low-T to sub-linear at high-T

• At sufficiently low T,              from noncritical fluctuations (even at QCP)ρ ∼ T2

Maslov, Yudson & Chubukov ‘11



• Cold spots do not particularly matter

-π 0 π
-π

0

π
-π 0 π

-π

0

π



DC resistivity

away from QCP

d ln ρxx /d ln Tρxx

!"
ℏ/%&

!"

hc



Conclusion

• In quantum critical metals, there is a finite-temperature region 
governed by extended Boltzmann transport


• Memory matrix is a good approximation to calculating the 
collision integral


• Temperature dependence of the DC resistivity does not show 
one particular power law scaling; smooth crossover from T2 
at low-T to sub-linear at high-T


• Compensated metal (                 )?

• Density wave QCPs that break translation symmetry?

• Generalization to bad metal regime?

• Connection to experiments?

Xiaoyu Wang and Erez Berg, in preparation

χJP → 0


