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Quantum chaos from an out-of-time correlation function
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® C(Classical chaos

= |nitial conditions in classical dynamics

linear/integrable non-linear/quasiperiodic

Harmonic oscillator 3-body systems: partly

2-body systems Planetary dynamics
KAM Theorem

non-linear chaotic

3+body systems: other part
Ergodicity
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® Quantum Chaos

" |ncorrect objection: Schrodinger equation is linear:

9
12w — v
Yo

= Correct objection: trajectories are “quantized”

pdq = 2mhn
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Review:
D’Alessio, Kafri, Polkovikov,
Rigol

° uantum Chaos
Q Bohigas, Gianonni, Schmitt

" |nsight: quantized classical chaotic systems have an eigenvalue
spectrum in the same class as random matrices (Wigner-Dyson)

dense, interacting spectrum with significant level repulsion

Advances in Physics 257
/GOE distribution
non-interacting ’ﬂ : :
chaotic cavity
harm.osc.
s=0 1 2 3 4 s=0 1 2 3 4
Figure 3. (Left panel) Distribution of 250,000 single-particle energy level spacings in a rectangular two-di-
mensional box with sides a and b such that a/b = ~/5 and ab = 4. (Right panel) Distribution of 50,000
single-particle energy level spacings in a chaotic cavity consisting of two arcs and two line segments (see
inset). The solid lines show the Poisson (left panel) and the GOE (right panel) distributions. From Ref. [80].
Berry, Tabor
= Corrollary: classical integrable systems have an eigenvalue
spectrum with Poisson statistics Caveat: not exact equivalence, there are
counterexamples
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® In a dynamical setting: when does the dynamics become

indistinguishable from RMT? L.
Ergodicity
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® A third way to detect chaos

m Choose

Chaos : q(t) ~ 6q(0)e r? C(t) ~ h?e* with A = ALy,
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® Semi-classical computation of conductivity in weak disorder

e Semiclassical regime )\ < a

Larkin, Ovchinnikov
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® Semi-classical computation of conductivity in weak disorder

® Semiclassical regime

C(1)

AN

e

= (W), VO)"[W (), V(0)]) ~ hr*e>

A\ < a variation on Sinai billiards

Larkin, Ovchinnikov
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® Semi-classical computation of conductivity in weak disorder

e Semiclassical regime )\ < a

® Nevertheless: quantum physics takes over when Larkin, Ovchinnikov

C(t) = (W), VO [W(t), V(0)]) ~h>e® ~1

Ehrenfest ti t 11 !
renfest time: Ehr — —In —
A h
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e Careful:
In the quantum regime chaotic behavior is hard.

i.e. most quantum analogues of classical systems with chaos do
not exhibit exponential growth in this OTOC correlator.

= Need a small parameter e.g. Grozdanov, Kukuljan, Prosen

" |n semi-classical systems I C(t) ~ B2
= |n holography: 1 C(t) ~ 1o
grapny: N Nz ©
Semi-classical single-trace lumps: large /N classicalization/
master field
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® In a dynamical setting: when does the dynamics become

indistinguishable from RMT? L.
Ergodicity
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® In a dynamical setting: when does the dynamics become

indistinguishable from RMT?

T T T T T
SYK, N, = 34, 90 samples, p=5, g(t) ——

‘ ‘ ‘
10" 10° 10" 102

Figure 1: A log-log plot of SYK ¢(¢; 8 = 5), plotted against time for N = 34. Here we
use the dimensionless combination t.J for time. Initially the value drops quickly, through a
region we call the slope, to a minimum, which we call the dip. After that the value increases
roughly linearly, ~ ¢, until it smoothly connects to a plateau around tJ = 3 x 10%. We
call this increase the ramp, and the time at which the extrapolated linear fit of the ramp
in the log-log plot crosses the fitted plateau level the plateau time. The data was taken
using 90 independent samples, and the disorder average was taken for the numerator and

denominator separately.

Cotler et al

Ergodicity

106 T T
—gm
By
104+ J
plateau
102+
T Ty
100+ linear ramp 1
T
o
2 | I
10
10 10* T 10° 108

FIG. 1. Typical structure!® of the linear universal “ramp” in the spectral form factor g(r) as well
as of the connected spectral form factor g.(7), which exhibits a longer “ramp” ranging from a
microscopic short time scale 79 below which non-universal effects set in, up to the Heisenberg time

Ti (also called plateau time 7).

Chen, Ludwig
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Chaos and diffusion
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® A very special feature of dilute gases

Maxwell

1

N = gmpgm.f.p. <712>
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® A very special feature of dilute gases }
van Zon, van Beijeren,

Maxwell Dellago
1 1 1 1 . \/ (V2

n = —m~/(v?) A = (= In(AD)?) ~ NACSY ~ pr/(V?)09 t0-2
3 O2_to—2 Tave 2 Em.f.p.
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® A very special feature of dilute gases }
van Zon, van Beijeren,

Maxwell Dellago
1 1 1 1 . \/ (V2

n = —m~/(v?) A = (= In(AD)?) ~ Wrel) ~ pr/(V?)09 t0-2
3 O02_to—2 Tave 2 Em.f.p.

® This is behind the Boltzmann equation

% Fp.t) = / (R™(p, k) — R (p, X)) f (K, 1)
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® A very special feature of dilute gases }
van Zon, van Beijeren,

Maxwell Dellago
1 1 1 1 ~ \/ (v?

n = —m~/(v?) A= —(=In(AD)?) ~ NACSY ~ pr/(V?)09 t0-2
3 O02_to—2 Tave 2 Em.f.p.

® This is behind the Boltzmann equation

d .
o m out
—f(pt) = [ (R"(p. k) — B*(p.k)) f(k.?)
k van Zon, van Beijeren,
1.000E AL LA UL Dorfma-n;
® Can we understand chaos T ] Saarloos
from a kinetic-like equation? ook §
0.001 i : il b1 ]
Ad hoc: clock equation
1000 g—r—r—rrrrmr—r—r
k—2 i ‘?’Ee"g!
d 9 0.100 : ‘
—Je=—fe+ fic1 + 2fk— E Je
di =0
o 0001 Ll 4wk 4
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® Hydro and scrambling are different scales:

= BBGKY hierarchy from statistical partition function

d n
ﬁfn — Z/dQn+1dpn+1 {U7 fn+1}qn+1,pn+1
1=1

Early time controlled by fl Late time controlled by fn
scrambling, chaos Transport
Ergodicity relaxation to equil.

= Dilute approximation (truncates hierarchy)

f2~ f7

gives Boltzmann equation
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scrambling=chaos=ergodicity is very different from local therm.=equilibration

There is a connection:
In classical thermalization chaos is the source of ergodicity
In special situations (weakly coupled dilute gas) they are set by the same physics
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A bound on chaos = a bound on diffusion?
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® A bound on chaos Maldacena, Shenker, Stanford

= Related regulated function:

F(t) = (W(t)yV(0)yW(t)yV (0)y) ~ 1 —

= Not time ordered: but |TF'D) = Z e 2 E\n )|n)

F(t) =Y (TFD|(W(t)V(0) ® 1)(1® W ()V(0))|TFD)

F(t) ~ Y (WHV(0)) (W(t)V(0))

= Analyticity in QFT demands
A< 27T
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® Black holes saturate this bound: maximal chaos

)\BH — 27T

= This observation is the driving force behind SYK

Kitaev
e.g. Stanford@Strings’ 16

It would be nice to have a solvable model of holography.

theory | bulk dual anom. dim. | chaos solvable in 1/N
SYM Einstein grav. | large maximal | no
O(N) | Vasiliev 1/N 1/N yes
SYK “Us ~ lads” O(1) maximal | yes
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e OTOCs in finite [NV SYK Bagrets, Altland, Kamenev

F T4\,
1
\ Mt
\ e~ (t—tx) ' 4
2r M
\2\ N €—2ﬂ2MT 46 T !

T—l

Figure 1: Results for the OTO correlation function. Top: At high temperatures, T > M~' and large times, 1 > 27M, the
function crosses over from exponential to power-law decay with an exponent t~. Bottom: at low temperatures, T < M~
the function is nowhere exponential. At large times 7 > T~' > M~! it again shows 1~ power-law behavior. The inset
shows the parametric extension of the four regimes in a t — T plane.

. In(MT) 1y - Vin(v)
BT onT 64/1J
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Scrambling and diffusion

® A refined version

Clt, ) = —(W(t,2), V(O [W(t,2), V(0)]) ~ hZese7ver
gives you a “scrambling” velocity
VLR = 2\
= First pioneered in |+| dimension systems

= Lieb-Robinson proved:

The velocity U, R is an absolute upper bound on information
spreading.

= UL R acts as en emergent lightcone.
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Scrambling and diffusion

® A refined version

Clt, ) = —(W(t,2), V(O [W(t,2), V(0)]) ~ hZese7ver
gives you a “scrambling” velocity
VLR = 2\
= First pioneered in |+| dimension systems

= Lieb-Robinson proved:

The velocity U, R is an absolute upper bound on information
spreading.

= UL R acts as en emergent lightcone.

® Idea:also in other systems this butterfly/Lieb-Robinson velocity is
the maximum “speed” at which information spreads
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e Diffusion is characterized by a velocity

v? v?

D~ — ~ —
T A

® Long sought goal: a fundamental quantum bound on diffusion

Q i Kovtun, Son, Starinets
s — A4rm
2 Hartnoll
D > Vine Hartman, Hartnoll, Mahajan
- T

® (Unstated) Hypothesis: U, R provides this fundamental velocity
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e Diffusion is characterized by a velocity

v? v?

D~ — ~ —
T A

® Long sought goal: a fundamental quantum bound on diffusion

Q i Kovtun, Son, Starinets
s — 4drm

V2 V2 Hartman II_—IIzI:tTc)DIIII Mahajan
D > ?Z:LC or D< CZZ?;LC , Lucas, |

® (Unstated) Hypothesis: U, R provides this fundamental velocity
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® Scrambling rate/Chaos is a microscopic “particle” property

e Diffusion is a macroscopic collective property
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® Scrambling rate/Chaos is a microscopic “particle” property

e Diffusion is a macroscopic collective property

A priori these are determined by very different physics.
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Khemani,Viswanath, Huse

2 2i+1

O LT LT LI~
=13t et 0 1

19
2 bbb e e " }q
T RERERE,

W/ }2

t=1 & 6 6 & o & &

FIG. 1. Left: a diagram of the unitary circuit. Each site
(black dot) is the direct product of a two-state qubit and a
g-state qudit. Each gate (blue box) locally conserves St°*, the
total z component of the two qubits it acts upon, and is thus
a block-diagonal unitary of the form shown on the right, with
each block of each gate independently Haar-random. The
smaller blocks do not flip the qubits and thus operate only
on the two qudits, while the larger block also produces S:°-
conserving qubit “fHip-flops”.
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Khemani,Viswanath, Huse

Unconstrained Random Circuits

Number Conserving Random Circuits
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acts as the coupling constant

1
q

Wednesday 29 August 18



109

1-C
[
T

......IH

1
© o
NOREEN|
l
|
o
2
—~
N
o)
N—

—400 —200 0 200 400

Late time behavior: (z — fUBt)_l/Z,

Khemani,Viswanath, Huse

FIG. 4. One minus the out-of-time-order commutator
(OTOC) between 2o(t) and 7, at zero chemical potential, C2,,
plotted against = for a system of length L = 1000 at different
times ¢ showing the different regimes discussed in the text.
For |z| > t (outside the dashed vertical lines), the OTOC is
strictly zero due to the locality of the circuit. In the region
vpt < |x| < t, which is inside the causal light cone but before
the leading front arrives, the OTOC is exponentially small
(green shaded area for the latest time). The arrival of the
ballistic operator front (|z| ~ vpt) leads to a strong increase
in the OTOC from a value exponentially small to an O(1)
value (shaded red area for the latest time). However, diffu-
sive tails in the operator shape or internal structure lead to
diffusive power-law tails in space and time ~ (z — vpt) /2
in the late-time approach of the OTOC to its final value of
1 (shaded blue area for the latest time). By contrast, for
an unconstrained random circuit (not shown), the OTOC at
a given site approaches one exponentially quickly after the
leading front passes®>2%. The diffusive region near the origin
|z| < v/ Dct (shaded purple) receives a subleading 1/¢ con-
tribution from the conserved charges which shows up as a
“dimple” in the curves at early times which becomes weaker
at late times. All curves are obtained via a simulation using
q = 3 and taking into account all processes to order 1/q2. The
dashed red curve is the ¢ = oo prediction for the functional
form of the tail (49).

no small parameter: 5 — 3
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® |s scrambling rate related to diffusion?

2 2
DNU_NUL_R
T A
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Ultra strongly correlated systems are similar to dilute gases
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String Theory for Condensed Matter

AdS-CFT duality

strongly coupled field theories without an energy scale (CFT) have a dual description
as a weakly coupled string theory in negatively curved space time (AdS).

Maldacena ATMP2, 231 (1998); Witten ATMP2, 253 (1998); Gubser, Klebanov, Polyakov, PLB428,105 (1998)
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Holography for Strongly coupled systems

works best when d.o.f. are matrices ®;; 7,7 =1... N with N > 1
1

semi-classical limit — — 0
N
N d-1,1
\\\\ minkowski
N \\ AdSyy
\\\\\\\\
N N N
\\ \:\\\\\\\
\\\\\\\\\
\\ \\\\\\\\\
\\\\\\\
\ \\\\
\\\
IR Uv - W
Z IR z

Zorr(J) = expiSTg N (@($oaas = J))

Quan.tltlm numbers .. Quantum numbers
Finite Temp AdS/CFT AdS Black hole

Finite Density w Extremal AdS black hole
i ' Gauge field

o
~
~a
~
~
|
-
~
~
~
.
-~
-~
-

Conserved Current
Energy dynamics Gravity dynamics
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OTOC in holography

® Shockwave calculation in AdS BH Roberts, Stanford, Susskind

F(t) =) (TFD|(W(t)V(0)® 1)(1® W (t)V(0))|TF D)
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OTOC in holography

® Shockwave calculation in AdS BH Roberts, Stanford, Susskind

F(t) =Y (TFD|(W(t)V(0) ® 1)(1v W (t)V(0))|TFD)

W (t)

tSchw

V(0)
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Blake;

® |Is scrambling rate related to diffusion? Davison, Fu, Georges, Gu,
Jensen, Sachdev.

For “relevant diffusion” (=irrelevant suscep)

Ay 27T

D =

..similar results for massive gravity (mean-field disorder), but fails in general

Lucas, Steinberg;

Gu, Lucas, Qi
® Refinement: charged systems with mean-field disorder

= Thermal diffusivity set by horizon properties only
(cf. Dp =n/sT) ,
Dy — Z  VUip
2z — 2 )\L

Blake, Davison, Sachdev
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® From a physics perspective these are puzzling results:
Zerr(J) = expiSiys™ (¢(poaas = J))
r'e B
Quantum numbers

Quantum numbers
AdS Black hole

Extremal AdS black hole
Gauge field
Gravity dynamics

Finite Temp
Finite Density
Conserved Current
Energy dynamics

NI )i

~
~
~
N
~
—
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® Shock waves are sound
m General metric
ds;. o = A(UV)AUAV + B(UV)gi;dx*da? — A(U,V)h(U, Z)dUdU

= Shock wave equation

5(U) (Agh - d%’h) = 32r EAS*(2)S(U)
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® Shock waves are sound
= General metric
ds;. o = A(UV)AUAV + B(UV)gi;dx*da? — A(U,V)h(U, Z)dUdU
= Shock wave equation
B/
5(U) (Agh - dzh) = 32r EAS*(2)S(U)
= Sound perturbation from AdS/CFT

L B , B" 0
A h(U, T) — Qth(U, ) —d y U@U

WU, &) = 0

for h(U, T) ~ 6(U)h(Z) reduces to shock
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® The shockwave is in Kruskal coordinates.

= Using Poincare coordinates

ds? = — f(r)dt® + d_TZ + r2da? — e'F* (f(?“)Hl(t r)dt* — 2H(t, r)dtdr + Hs(t,r) dr” ) :
f(r) | | O f(r)

= Solution to Einstein’s Eqgns:

k2t _k2+12r?|— ™ e f(r' )L
(1) = Hy(t,7) = (01026 ) e,

2 2
k2 ¢ k2t k=+12r3 Ty’ /N —1
— — r' f(r
Hsy(t,r) = (C’l e’™+ —(Chye 3T+>e sy ) () .
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® Write as a sound wave.

= Obeys a diffusion relation

2
d82 — f(,r.)dtz _|_ d—/rz _|_ ,r.Qd:Z.Q _ Cl 6—iwot—|—ikze(iwo—4r+)r* (Ir)f(’r’) (dt . d?“ )
f(r) £(r)
2
— 02 6_iwit+ikze—(’iwi—|—47”+)’r* (T)f('r') (dt 4 d?” ) .
f(r)
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® For the sound wave to be regular (on the horizon)

Wo = —2iry = =27l , w; = 2iry = 2wl

2

dr
ds® = — f(r)dt* + )

: : dr \°
— O Wi (t—rs(r))+ikz r (dt 4+ ) .
: O\ 765

. : dr \’
+ 7“2df2 _C e—zwo(t—|—r* (7“))—|—2sz r (dt o )
! A

® This regularity condition also means

k* 4+ p® =0, with u* = 6r; = 67°1°,
® This is the shock wave equation

(6#92 — ,u2) h(a:) =0
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® More precisely:
= Sound is the physical (gauge-invariant) mode of Ay

" |n radial gauge

k2 /—20.]27“ 2
ZBtht+( /

2

2k2r k k2

= |n a different gauge

21w f 2
7 hir + Iz (2w® + ) hyp.

= The latter reduces on the horizon to the previous calculation

Z3 = hy —

Supportis 1/U instead of 6(U)
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® Sound at imaginary values of frequency and momentum

)\2
w=2miT =i\ , k*=—p?=—61°T? = -

UB
® Hydrodynamical sound (known up to 3rd order analytically)

, |
wk)=+—k— — K>+ ...

V3 671’

= Relaxational modes: real momentum, complex/imaginary
frequency

measures relaxation time

= Penetration depth: real frequency, complex/imaginary momentum

measures relaxation length (penetration depth)

= Doubly imaginary:“temporal response” to “spatial profile”
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® Sound at imaginary values of frequency and momentum

)\2
w=2miT =i\ , k?=—p?=—60°T% = -2,

UB
® Hydrodynamical sound (known up to 3rd order analytically)

1

K2+ ...

w(k) = £k —

V3 6T

Im o

)\L/27TT
3/4
1/2

1/4

~1/4
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® Sound at imaginary values of frequency and momentum

)\2
w=2miT =i\ , k*=—p?=—61°T? = -

UB
® Hydrodynamical sound (known up to 3rd order analytically)

1 1
Im to
0 = vR(q
D R e : LN

34 L2 : Curious: QNM mode residue
| vanishes precisely at

1/2 ¢ l .
l w = 2wl
|
|

1/4

i d
i d
L 4
L d
\d
i d
L d
L 4
i d
L d
Ld
i d
-
i d
L d
L d
L d
L d
L d
L d
L d
L d
L d
\d
L d
L d
>
..
L d
‘ﬂ
*

Also happens in SYK.
. [Gu, Qi, Stanford]

 p/AnT /x 1) 27 Direct consequence of the

—1/4} o ) : existence of the shockwave

! solution
[Blake, Lee, Liu]

\
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® |In generality

S 2/{/2 d55’7\/7 [R + % + £matter]
ds® = — f(r)dt* + 7 (Jf()f; +0(r) (do® 4 dy® + dz?) — [f(r)ciwiwt + f(lr) dr)?

o r  dr! .
W:l:(t7 Z7 7’) — 4 e [t:l: f(T/)]—FLkZ h:l:(’r‘)

W £, = FD0>Wil|,, tr-Einstein Eq.
ViR
D — LR
AL
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® |s scrambling related to diffusion?
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® s scrambling related to diffusion?

= |n two-derivative gravity scrambling is a diffusive sound wave
on the horizon with

2

(Y
D =LA
AL

= This explains Blake’s observation and all previous results
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® s scrambling related to diffusion?

= |n two-derivative gravity scrambling is a diffusive sound wave
on the horizon with

2
D — VLR
AL
= This explains Blake’s observation and all previous results.

® However,

= This does not equal the diffusion constant in the CFT

n 3 D 3V (rp)
D —_— T — _D — =
CFT ST A hor D IrT
= Even though this also computed on the horizon (special to
momentum diffusion) Davison, Fu, Georges, Gu,

Jensen, Sachdev.
Blake, Davison, Sachdev
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Im o

)\L/27TT

Physical diffusion 3/4
is given by the

behavior near 1/2

/4

w1

by now verified in
many models
[Blake, Davison,
Grozdanov,Liu]

~1/4

Curious: QNM mode residue
vanishes precisely at

w = 2mi’

Also happens in SYK.
. [Gu, Qi, Stanford]

 p/AnT /x 1) 27 Direct consequence of the

B ' existence of the shockwave

‘ﬂ
"
L d

i d
i d
L 4
L d
\d
i d
L d
L 4
i d
L d
Ld
i d
-
i d
L d
L d
L d
L d
L d
L d
L d
L d
L d
\d
L d
L d
>
..
L d
‘ﬂ
*

- ' 1
! solution
[Blake, Lee, Liu]
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® s scrambling related to diffusion?

= |n two-derivative gravity scrambling is a diffusive sound wave
on the horizon with

2
D — VLR
AL
= This explains Blake’s observation and all previous results.

® However,

= This does not equal the diffusion constant in the CFT

N 3 D 3V (rp)
D —_— T — _D — =
CFT ST A hor D 7T )
= Even though this also computed on the horizon (special to
momentum diffusion) Davison, Fu, Georges, Gu,

Jensen, Sachdev.
Blake, Davison, Sachdey;
Blake, Davison,
Grozdanoy, Liu
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Two important conclusions
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e Diffusion is characterized by a velocity

2 2
DNU_NUL_R
T A

® Long sought goal: a fundamental quantum bound on diffusion

Q 1 Kovtun, Son, Starinets
s — Am
2 2 Hartnoll
V: V: ,
D > Anc qr D < nc Hartman, Hartnoll, Mahajan
— T —

® (Unstated) Hypothesis: U, R provides this fundamental velocity
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e Can UL R give rise to a fundamental diffusion bound?

It appears that quantitatively there is no firm relation between
late-time diffusion and scrambling

D o 3 b/(Th)

D ST

= The butterfly velocity does not appear to be a speed limit.

Im o

)\L/27TT
3/4 1
1/2+

14|

Eal

X

\J
\J
\J
\J
X
—
=

=
~
[ V]
B
~

—1/4}
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® Black hole scrambling is hydrodynamics

= A revolutionary result
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® Black hole scrambling is hydrodynamics
= A revolutionary result:
Scrambling rate/Chaos is a microscopic “particle” property

Diffusion is a macroscopic collective property

® A priori these are set by very different physics
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® Black hole scrambling is hydrodynamics
= A revolutionary result:
Scrambling rate/Chaos is a microscopic “particle” property

Diffusion is a macroscopic collective property

® A priori these are set by very different physics

= Except: a weakly coupled dilute gas.

Maxwell
1 2
T — gmpgm.f.p. <U >

Famous “first” result of molecular kinetic theory
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® Black hole scrambling is hydrodynamics
= A revolutionary result:
Scrambling rate/Chaos is a microscopic “particle” property

Diffusion is a macroscopic collective property

® A priori these are set by very different physics

= Except: a weakly coupled dilute gas.

Maxwell

1= my/?)—

02_to—2

Famous “first” result of molecular kinetic theory
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® Black hole scrambling is hydrodynamics
= A revolutionary result:
Scrambling rate/Chaos is a microscopic “particle” property

Diffusion is a macroscopic collective property

® A priori these are set by very different physics

= Except: a weakly coupled dilute gas. van Zon, van Beijeren
Maxwell Dellago
1 1 1 1 . (v2))
n = gm\ /{v?) \ = T—<§ In(A7)?) ~ g—l ~ py/ (V?) 0902
O02_to—2 ave m.f.p.

Famous “first” result of molecular kinetic theory
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® Black hole scrambling is hydrodynamics
= A revolutionary result:
Scrambling rate/Chaos is a microscopic “particle” property

Diffusion is a macroscopic collective property

® A priori these are set by very different physics

= Except: a weakly coupled dilute gas. van Zon, van Beijeren
Maxwell Dellago
1 1 1 1 . (v2))
n = gm\ /{v?) \ = T—<§ In(A7)?) ~ g—l ~ py/ (V?) 0902
O02_to—2 ave m.f.p.

= Except: two-derivative holography

but now it is the macroscopic properties that set ergodicity
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® “Chaos [scrambling] in the black hole S-matrix” Polchinski

(Joxl)

T hermal

Equilibration Ruelle resonances

Quasinormal modes \

In two-derivative holography
as in a classical dilute gas
these are set
by the same physics

Exponential Lyapunov growth

Shock wave /
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Ultra strongly correlated systems are similar to dilute gases
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® Quantum chaos in weakly coupled systems

“Surprisingly a relation of the form D ~ ?}%RT shows up in a number
of non-holographic contexts”

® Most of these are weakly coupled zero density field theory
results.

This should not be a surprise. This is the classical dilute gas
computation.
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® Quantum chaos in weakly coupled systems

“Surprisingly a relation of the form D ~ ’U%RT shows up in a number
of non-holographic contexts”

® Most of these are weakly coupled zero density field theory
results.

This should not be a surprise. This is the classical dilute gas
computation.

From the point of view what you compute it is a surprise
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Scrambling in weakly coupled QFT is classical dilute gas

e Object of interest for \,vrr

T

C(t) = (W), VOI' W), V(0)]) ~ e mr

growing mode

e Object of interest for D = g
o1
= c};l—% EIm<TfL’y<w)> Toy(—w))r

(G g only supports decaying modes
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® Transport ® Scrambling/Chaos
GR(t) ~ PaDylay ([P RY, 2%a])s  CO(t) ~ ([@°°, *][@ap, Ped]) 5

Schwinger-Keldysh contour OTOC contour
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® Transport ® Scrambling/Chaos
GR(t) ~ PaDylay ([P RY, 2%a])s  CO(t) ~ ([@°°, *][@ap, Ped]) 5

Schwinger-Keldysh contour OTOC contour

= |n free field theory

C(t) ~ Gr(t) = 2GR (t) + O(N)

. . Stanford, Jeon
" |n perturbation theory Transport and Scrambling sum the same

ladder diagrams

O+ D+AD+-

FIG. 2: Resummation of ladder diagrams. The insertions of the energy-momentum tensor operator

T is denoted by the crossed dots and black dots are the vertices with the coupling constant .
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® Transport ® Scrambling/Chaos
GR(t) ~ PaDylay ([P RY, 2%a])s  CO(t) ~ ([@°°, *][@ap, Ped]) 5

Schwinger-Keldysh contour OTOC contour

= |n free field theory

C(t) ~ Gr(t) = 2GR (t) + O(N)

. . Stanford, Jeon
" |n perturbation theory Transport and Scrambling sum the same

ladder diagrams

O+ D+AD+-

FIG. 2: Resummation of ladder diagrams. The insertions of the energy-momentum tensor operator

T is denoted by the crossed dots and black dots are the vertices with the coupling constant .
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This Bethe-Salpeter egn
Schwinger Keldysh Con is the QFT version of the
Boltzmann equation

O+ D+ A+

~ ) g_ g 4 N
Glolk) = 5 jfw—l—fF: [1+ / (;T;R(f—p)G(ﬂk)].

® Ansatz

G(plk) = (pt — E2)f(p|k)

(<o 4 20 f(BIb) = - 1+ [(R(EL~ gyl = p) + R(Ev + B 1= D)LAAB)|.

—
EP 1

gives

10 = [(R" (.10 = R (p.10) (k.1
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This Bethe-Salpeter egn
Schwinger Keldysh vsOTOC is the QFT version of the

Boltzmann equation

. SctheId©+®+@ L

~ o 0(pg — Ep) 't ~

G(plk) = ol —m+2rpp [1+ / (QW)4R(€—p)G(€|k)].
e OTOC
~ 7 8(p}—E}) d*¢ sinh(8p°/2) .
G0lk) = 5, S ar, [1 i / (27" sinh (30 2) _p)g(“’)] |
e Ansatz

G(plk) = 6(ps — E2)f(p|k)

(i + 20p)f(plk) = [ SO (R — RUL) FOdb

1
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Grozdanov, Schalm, Scopelliti,
® Transport ® Scrambling/Chaos

GR(t) ~ pmpyCIfBQy<[(I)ab(I)ab7 (I)qu)cdDﬁ C(t) ~ <[(I)ab7 (I)Cd] [(I)abv (I)Cd]>5

Schwinger-Keldysh contour OTOC contour
O+DO+dD
Boltzmann equation (net density) Kinetic equation (gross collisions)
Lpat) = [ (0.~ R0, t) 5T = [ SR ,k) + R (p )00
dt P, - P, | S ’ dt ? E(k) ’ !
k k
purely relaxational front propagation into unstable states
f(p,t) ~ e with A <0 f(p,t) ~ M with A < Apag > 0

Saarloos, vBeijeren,
Aleiner, Faoro, loffe

«: Rout(p,k) = R°"(p,k) — 20(p — k)R (k k)
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® Chaos follows from kinetic equation for gross energy exchange

00 = [ S0 (R (210 + B (p.K) ~ 20(p ~ R (k.1 (k)

= This is derived as opposed to ad hoc clock model

k—2
d
%fk — —fk + f;f_l =+ 2fk—1 ;_%fe

Qualitatively physics is similar (unstable front dynamics)
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blue: eigenvalues A\ for SchwKeld /Boltzmann

red: eigenvalues A for OTOC /Energy-exchange

0.03

0.02 - — O0TOC i
— Retarded

0.01 -

0,

=
~<
g

m
‘Q’<

—0.01

—0.02

—0.03 £

,004 L Lol L Lol ! Lo ! Lol L Lo
1074 103 102 1071 100 10t

psm

This explicitly shows in weakly coupled dilute QFT scrambling
and diffusion are set by the same dynamics --- even though
they are not identical.
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blue: eigenvalues A\ for SchwKeld /Boltzmann

red: eigenvalues A for OTOC /Energy-exchange

0.03

0.02 - — O0TOC i
— Retarded

0.01 -

0,

[
<
g

o=

—0.01

—0.02

—0.03 £

,004 L Lol L Lol ! Lo ! Lol L Lo
1074 103 102 1071 100 10t

psm

= This explicitly shows in weakly coupled dilute QFT scrambling
and diffusion are set by the same dynamics --- even though
they are not identical.

1 1 1,1 :
n = —m+/(v?) A\ = (= In(ATD)?) ~ Wrel) ~ py/ (V?) 09102
3 O92_to—2 Tave 2 gm.f.p.
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Conclusion

|. Quantum Chaos from an out-of-time-correlation function
C(t) = —(W ). VO] [W (), V(0)]) ~ h%e* ~ 1
2. Chaos and diffusion
different time scales: exception dilute gas
3. A bound on chaos = a bound on diffusion?
No, here, or trivial, or ...
4. Ultra strongly correlated systems are similar dilute gases

Scrambling and diffusion are set by the same physics

5. A kinetic equation for Quantum Chaos Grozdanov, Schalm, Scopelliti,

L=/ % (R™(p, k) + R (p, k) — 26(p — k) R (k, k)) (k)
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Conclusion

5.

d

dt

Quantum Chaos from an out-of-time-correlation function
C(t) = —(W ). VO] [W (), V(0)]) ~ h%e* ~ 1
Chaos and diffusion
different time scales: exception dilute gas
A bound on chaos = a bound on diffusion?
No, here, or trivial, or ...

Ultra strongly correlated systems are similar dilute gases

Scrambling and diffusion are set by the same physics

A kinetic equation for Quantum Chaos Grozdanov, Schalm, Scopelliti,
in graphene: Klug, Scheurer, Schmalian

(p.0) = [ ) (R, k) + R (b, 1) 26(p ~ KJR(k K) 9

/ k)
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Thank you
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