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Introduction

Use the gauge/gravity correspondence as a tool to investigate the
dynamics of strongly coupled CFTs at finite temperature, charge
density and external magnetic field.

- Attempt to understand universal features of strongly coupled
condensed matter systems found in the vicinity of quantum
critical points.

- Explore black hole physics: construct and study novel charged
black hole solutions that asymptote to AdS.




Questions to address?

Specific questions that can be addressed:

'What type of phases are possible and what are the properties of
each phase?

- What kind of ground states are possible? cooling down or
classification of IR geometries?

- How do these phases compete? What is the dual phase
diagram?

But what is Holography?
and how does it work?




~ Gauge/ Gravity _

Einstein’s gravity realised
theor on particular d+1
Y . dimensional manifolds,

In d dimension ? weakly coupled

Strongly interacting

Partition functions




'The dictionary
Simplest set-up: T=0,B=0, no charge density.

Bulk: Gravity theory lives here.
Anti-de-Sitter spacetime

Boundary: Flat.
Strongly coupled
matter lives here:

CFT.

Emergent holographic direction,
captures the resolution scale.

[G,R]=0




The dictionary
Add temperature, charge density, magnetic field, etc

Boundary Bulk

finite temperature, T | BH with the same T

electrons, u electric field

iIn magnetic field, B magnetic field

W\ Thermal field

theory at finite
\/ density and B

BH horizon




Putting everything together

Idea: Distinct phases of matter correspond to different
branches of black holes

Goal: given the desired field theory deformations (e.g. B, M),
construct all possible branches of black holes within a theory.




Competition of phases:
« Superconductors, SM phases

Normal phase

Further instabilities
may occur

Instabilities of ZZw—tP
normal phase:

For ground state,
which one is realised?

follow preferred branch
=" downto T=0




Holographic Superconductors
In external magnetic field



Holographic Superconductors

Phases of matter in which a charged operator spontaneously
acquires an expectation value.

Holographically:
* minimal ingredients:

- finite temperature black holes in AdS
- finite charge density — U(1) gauge field
- an order parameter charged scalar (s-wave)

- Manifestation of transition: at low T, a new branch of BHs with
non-trivial order parameter eme%:s: U(1) spontaneously broken.

* No hair theorems
only in flat space




' Strongly coupled SC in magnetic field?

The model: simplest Holo-SC [Hartnoll,Herzog,Horowitz]
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16w G 4

Potential: it controls the superconducting ground state

e R U
Ve + 2 m? <0, u >0

to have AdS  mass term, fixes
scaling dimension

m?=-2=A=1,2
Cs | Cy

Yp=—+ 5+ r—=00
rooor




Solutions:
« Unit radius AdS: vacuum solution: A=y =0
Dual to a d =3 CFT with a conserved U(1) currents.

| Electric AdS-RN black brane: ¢ = 0, A — udt
Dual field theory places at finite temperature and chemical
potential, (7', i)

 Dyonic AdS-RN black brane: ¢ =0, A — ndt 4+ Bzdy
Dual field theory places at (T, u, B)
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Step 1: Instabilities near the horizon of the BH EASY

Study perturbations around the near-horizon limit of the electric

AdS-RN:

* Modes tend to be more unstable in this region.
- Use the AdS: BF bound criterion to check for instabilities: if the
bound is violated, the theory is unstable (converse not always

true)

(D —1)

2 2
LipyM™ 2 ——

=N

Ads, ¥ — LigM*p =0, M? =m* —2¢°

3
2 2
92> 2




Step 2: Determine T. relatively EASY

 Consider linearised perturbations around the full AAS-RN black

hole

 Solve 1 linear 2nd order ODE for the scalar subject to boundary

conditions: ), — Cs  Cv | .
T

| |
72

[Hartnoll,Herzog,Horowitz]
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Step 3: Backreacted solutions DIFFICULT
(non-linear coupled ODEs/2D PDEs/3D PDEs)

* Necessary: is the new branch of black holes preferred? What is
the ground state?
* Solve 4 non-linear ODEs subject to boundary conditions.

Value of u in the
potential is important
at this step
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Ground states (Gubser, Nellore]
- For q large, AdS-AdS domain wall: ¢ Lir¥rr > 1

2
Vir =\ Zl — =0

—6
Vir

L[R: < L =1

- For g small, AdS to Lif in IR.

COnd u Cthlty " [Hartnoll,Herzog,Horowitz]

- delta function as zero frequency with additional weight
- iIndications of deviation from quasiparticle picture




Turn on a magnetic field?

We are studying a thin 2D thin superfluid layer:
- for non-zero B, flux lines will penetrate uniformly
- still need to establish is there exist a critical B

SC destroyed as 2 Vortex lattice:
soon as B non-zero SC destroyed only
at the vortex core

Not a droplet lattice [Hartnoll,Herzog,Horowitz]
No assumptions, no limits [Albash,Johnson]




Starting Point:

Dyonic AdS-RN black brane: (7', i, B)
Y =0,A = udt + Bxdy

Step 1: AdS; x R*  AdS,

B contributes in the effective IR mass, but with opposite sign:
as B increases, less and less unstable.

M? = m?— 2¢* + 24¢° B* + O(B?)




Step 2: Determine T.
1 linear PDE for the scalar. Separate variables:

Y(r,z,y) = h(r)®(z,y)

 Eigenvalue eqgn can be solve fully, subject to boundary conditions:
D® =\
Aj = —qB(2j +1) Landau Level
ch

0.08

* Radial equation, to
solved numerically 0.06
(depends on A): T<(j,q,B) ..

| owest Landau
092 Level, g=2




Step 3: DIFFICULT (non-linear coupled ODEs/2D PDEs/3D PDEs)

Each vortex cell: L, L,, v

vortex C 5
lattice / V
3 :
A L, B

lanar
hporizon AdS, (z,y) ~ (x + L, y)
(T,M,B) (x’y)N(x—l_vLy?y—l_Ly)
cos 3 = Y

v2 +1
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Flux guantisation

Actually the problem on the(z, y) plane is only quasi periodic!
A =a— Brdy IBIOD EEC -

Compatibility implies quantisation condition: qBL,L, = 2 |
Dimension of moduli space reduced: 2d —

flux quanta carried
by the vortex
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Setting up the problem

- Translation invariance broken in 2 spatial directions: all
components are on; 16 PDEs in 3 variables, (7, z,y)!

- Gauge fixing: [Headrick, Kitchen,Wiseman].
Use the DeTurck trick to dynamically fix the gauge:
metric, gauge field

- Boundary conditions:
- AdS asymptotics, no sources (spontaneous)
- Regularity at the horizon

X- direction periodic

y- quasi-periodic

- Solve the equations numerically using spectral methods on
the Hamilton cluster. Check convergence.
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“Abrikosov’” vortex lattice

Analysing the moduli space of oblique n=1 lattices: {L,,v}
free energy for 1'/T,. = 0.7, B=0.01

Expected from Landau-

Ginzburg, but only for T~Tc
[Abrikosov, 57]

!

Preferred configuration
corresponds to a triangular
lattice with L, = L, .

!

Hints towards novel ground
states

Persists at lower T, higher B.
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‘ Preferred solution

scalar field vev

superconducting
state

current

No condensate: normal phase
Flux lines trapped by currents
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Thermodynamic quantities

Higher entropy
where no condensate

Energy-Momentum tensor - Tu
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“Abrikosov’” vortex lattice

From the numerics we also see:
Along the preferred branch, the stress tensor is that of a

perfect fluid. [Donos,Gauntlett],[Donos,Gauntlet, CP]

1 average
T —TY — _— _tt _ p&”’pressure
Y

bar: average ’ 2 _
over period T;E =0
This can easily be understood by the 1st law of
thermodynamics when (T, i1, B) = fized and (Lg,v) = vary:
ow 5_w _ 0
5L, v
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Future directions

 Exploration of parameter space and potentials

* Higher LLs and higher-flux vortices

» Construct the ground state directly and try to match with low-
T numerics? connect to BPS configurations?

* Check stability of the configuration: QNM, compute force
between vortices?

» Conductivities?

» Spectral functions?

Thanks for
listening!
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