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Introduction 

Use the gauge/gravity correspondence as a tool to investigate the 
dynamics of strongly coupled CFTs at finite temperature, charge 
density and external magnetic field.

• Attempt to understand universal features of strongly coupled 
condensed matter systems found in the vicinity of quantum 
critical points.

• Explore black hole physics: construct and study novel charged 
black hole solutions that asymptote to AdS.
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Questions to address?

Specific questions that can be addressed: 

• What type of phases are possible and what are the properties of 
each phase?

• What kind of ground states are possible? cooling down or 
classification of IR geometries?

• How do these phases compete? What is the dual phase 
diagram?

But what is Holography?
 and how does it work?
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Gauge/ Gravity 
duality

Einstein’s gravity realised 
on particular d+1 

dimensional manifolds,
weakly coupled

Strongly interacting 
theory

 in d dimension 

Partition functions
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Boundary: Flat.
Strongly  coupled 
matter lives here: 

CFT.

The dictionary
Simplest set-up: T=0,B=0, no charge density.

r

Bulk: Gravity theory lives here.
 Anti-de-Sitter spacetime

Emergent holographic direction,
captures the resolution scale.

[G,R]=0

UVIR
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The dictionary
Add temperature, charge density, magnetic field, etc

Boundary Bulk

finite temperature, Τ BH with the same T

electrons, μ electric field

in magnetic field, B magnetic field

BH horizon

EM flux
Thermal field 
theory at finite 
density and B
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Idea: Distinct phases of matter correspond to different 
branches of black holes

Goal: given the desired field theory deformations (e.g. B, μ), 
construct all possible branches of black holes within a theory.

Putting everything together
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Normal phase 

Instabilities of 
normal phase: 

which one is realised? 

Further instabilities 
may occur 

Competition of phases:
• Superconductors, SM phases

For ground state, 
follow preferred branch 

down to T=0 

T=0
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Holographic Superconductors
 in external magnetic field
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Holographic Superconductors

Phases of matter in which a charged operator spontaneously 
acquires an expectation value.

Holographically:
• minimal ingredients: 
 - finite temperature              black holes in AdS
 - finite charge density          U(1) gauge field
 - an order parameter           charged scalar (s-wave)

• Manifestation of transition: at low T, a new branch of BHs with 
non-trivial order parameter emerges: U(1) spontaneously broken.

No hair theorems 
only in flat space

=)
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Strongly coupled SC in magnetic field?

[Hartnoll,Herzog,Horowitz]The model: simplest Holo-SC
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Solutions:
• Unit radius AdS4 vacuum solution:                                                            

Dual to a d = 3 CFT with a conserved U(1) currents.

• Electric AdS-RN black brane:
Dual field theory places at finite temperature and chemical 
potential,

• Dyonic AdS-RN black brane:
Dual field theory places at                   

A =  = 0

AdS2 ⇥R2 AdS4

EM flux

(T, µ)

(T, µ,B)

T, µ,B

 = 0, A ! µdt

 = 0, A ! µdt+Bxdy



Step 1: Instabilities near the horizon of the BH EASY

Study perturbations around the near-horizon limit of the electric 
AdS-RN:
•  Modes tend to be more unstable in this region.
•  Use the AdS2 BF bound criterion to check for instabilities: if the 

bound is violated, the theory is unstable (converse not always 
true)

13

⇤AdS2 � L2
(2)M

2 = 0, M2 = m2 � 2q2

L2
(D)M

2 � � (D � 1)

4
) m2 � 2q2 � �3

2



14

Step 2: Determine Tc relatively EASY

• Consider linearised perturbations around the full AdS-RN black 
hole

• Solve 1 linear 2nd order ODE for the scalar subject to boundary 
conditions:   =

cs
r

+
cv
r2

+ · · ·

[Hartnoll,Herzog,Horowitz]
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Step 3: Backreacted solutions  DIFFICULT 
(non-linear coupled ODEs/2D PDEs/3D PDEs)

• Necessary: is the new branch of black holes preferred?  What is 
the ground state?

• Solve 4 non-linear ODEs subject to boundary conditions. 

p
hO2i
Tc

⇠
✓
1� T

Tc

◆1/2

Value of u in the 
potential is important 

at this step

[Hartnoll,Herzog,Horowitz]
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• For q large, AdS-AdS domain wall:

• For q small, AdS to Lif in IR.

Ground states

 IR =

r
�m2

u
 !  = 0

LIR =

r
�6
VIR

 ! L = 1

q LIR IR > 1

Conductivity: 
- delta function as zero frequency with additional weight
- indications of deviation from quasiparticle picture

[Hartnoll,Herzog,Horowitz]

[Gubser, Nellore]
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Turn on a magnetic field?

We are studying a thin 2D thin superfluid layer:
- for non-zero B, flux lines will penetrate uniformly 
- still need to establish is there exist a critical B

SC destroyed as
 soon as B non-zero

2D Vortex lattice: 
SC destroyed only 
at the vortex core

 Not a droplet lattice
 No assumptions, no limits [Albash,Johnson]

[Hartnoll,Herzog,Horowitz]



Starting Point:

Dyonic AdS-RN black brane:

Step 1:
B contributes in the effective IR mass, but with opposite sign:
as B increases, less and less unstable.
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 = 0 , A = µdt+Bxdy

AdS2 ⇥R2 AdS4

EM flux

(T, µ,B)

M2 = m2 � 2q2 + 24q2B2 +O(B3)
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Step 2: Determine Tc

1 linear PDE for the scalar. Separate variables:

• Eigenvalue eqn can be solve fully, subject to boundary conditions:

• Radial equation, to  
solved numerically 
(depends on λ): Tc(j,q,B)

 (r, x, y) = h(r)�(x, y)

D� = ��

�j = �qB(2j + 1) Landau Level

0.1 0.2 0.3 0.4
B

0.02

0.04

0.06

0.08

Tc

Lowest Landau 
Level, q=2
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Step 3: DIFFICULT (non-linear coupled ODEs/2D PDEs/3D PDEs)

vortex 
lattice

Each vortex cell: 
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Actually the problem on the         plane is only quasi periodic!

Compatibility implies quantisation condition:
Dimension of moduli space reduced: 2d

(x, y)
A = a�Bxdy
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Resolution:
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Flux quantisation
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• Translation invariance broken in 2 spatial directions: all 
components are on; 16 PDEs in 3 variables,            ! 

• Gauge fixing: [Headrick, Kitchen,Wiseman].
Use the DeTurck trick to dynamically fix the gauge: 
metric, gauge field

• Boundary conditions: 
- AdS asymptotics, no sources (spontaneous)
- Regularity at the horizon
 x- direction periodic
 y- quasi-periodic

• Solve the equations numerically using spectral methods on 
the Hamilton cluster. Check convergence.

(r, x, y)

Setting up the problem
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“Abrikosov” vortex lattice

Analysing the moduli space of oblique n=1 lattices:
free energy for                   , B=0.01

Preferred configuration 
corresponds to a triangular 
lattice with
Persists at lower T, higher B.

L
x

= L
y

.

Expected from Landau-
Ginzburg, but only for T~Tc 
[Abrikosov, ‘57]

Hints towards novel ground 
states

T/Tc = 0.7
{L

x

, v}
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    scalar field vev                                      current

No condensate: normal phase 
Flux lines trapped by currents

Preferred solution

superconducting 
state
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    Entropy                            Energy-Momentum tensor - Ttt

Thermodynamic quantities

Higher entropy 
where no condensate
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From the numerics we also see:
Along the preferred branch, the stress tensor is that of a 
perfect fluid. [Donos,Gauntlett],[Donos,Gauntlet, CP]

This can easily be understood by the 1st law of 
thermodynamics when                              and                        :

“Abrikosov” vortex lattice

T̄ x

x

= T̄ y

y
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2
T̄ t

t
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T̄ x

y
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bar: average 
 over period

average  
pressure

(T, µ,B) = fixed

(L
x

, v) = vary

�w

�L
x

=
�w

�v
= 0
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Future directions

• Exploration of parameter space and potentials
• Higher LLs and higher-flux vortices
• Construct the ground state directly and try to match with low-

T numerics? connect to BPS configurations?

• Check stability of the configuration: QNM, compute force 
between vortices?

• Conductivities?
• Spectral functions?

Thanks for 
listening!


