Need for (sound) speed and holography

Niko Jokela

- Is speed of sound bounded at strong coupling?
- Why do we care?
- In this talk 3+1d, but many comments apply equally well elsewhere

Outline

(1) Speed of sound, equation of state
(2) Hints for a bound in holographic models
(3) Breaking bounds

$$
v_{s}^{2}=\left(\frac{\partial p}{\partial \epsilon}\right)_{s}
$$

- Plays an important role in hydro
- By dim.analysis $p \rightarrow T^{4}, T \rightarrow \infty, \epsilon=T \frac{\partial p}{\partial T}-p \rightarrow 3 p$ and $v_{s}^{2} \rightarrow 1 / 3$
- Approach $1 / 3$ always from below? E.g. in QCD from asymptotic freedom:

$$
v_{s}^{2} \approx \frac{1}{3}+\frac{5 N_{c}}{36 \pi} \beta(\alpha)<\frac{1}{3} .
$$

- What about strongly interacting systems?

Equation of state and stiffness

$$
v_{s}^{2}=\left(\frac{\partial p}{\partial \epsilon}\right)_{s}
$$

- Equation of state fixes

$$
p=p(\epsilon)
$$

- In a CFT

$$
\left\langle T_{\mu}^{\mu}\right\rangle=0=-\epsilon+3 p \rightarrow v_{s}^{2}=1 / 3
$$

- Causality restricts the EoS:

$$
p \leq \epsilon
$$

Equation of state and stiffness

- Compress the fluid and the energy increases
- The pressure also increases which opposes compression
- The larger $\partial p / \partial \epsilon$, the less compressible the fluid is
- The EoS is stiffer (softer) the larger (smaller) v_{s}

Examples of soft EoS in holography

- First computed in $\mathcal{N}=4$
[Policastro-Son-Starinets'02]

$$
v_{s}^{2}=\frac{1}{3}
$$

- "Mass deformed $\mathcal{N}=4 ", \mathcal{N}=2^{*}$:
[Benincasa-Buchel-Starinets'05]

$$
v_{s}=\frac{1}{\sqrt{3}}\left(1-\frac{\Gamma(3 / 4)^{4}}{3 \pi^{4}}\left(m_{f} / T\right)^{2}-\frac{1}{18 \pi^{2}}\left(m_{b} / T\right)^{4}+\ldots\right)
$$

- Klebanov-Strassler $\mathcal{N}=1$:
[Aharony-Buchel-Yarom'05]

$$
v_{s}^{2}=\frac{1}{3}-\frac{2}{9} \frac{1}{\log \frac{T}{\Lambda}}+\ldots
$$

Class of holographic models and lattice QCD

- For a family of models at high temp
[Gubser-Nellore'08,Cherman-Cohen-Nellore'09,Hohler-Stephanov'09]

$$
\begin{aligned}
& S=\frac{1}{2 \kappa_{5}^{2}} \int d^{5} \times\left(R-\frac{1}{2}(\partial \phi)^{2}+V(\phi)\right) \\
& v_{s}^{2} \simeq \frac{1}{3}-C(\Delta)(L T)^{\Delta-4}
\end{aligned}
$$

- Also for several scalars below conformal value
[Cherman-Nellore'09]
- Scalars at finite density:
[Yang-Yuan'17]

$$
\left(\frac{\partial p}{\partial \epsilon}\right)_{\mu} \leq \frac{1}{\sqrt{3}}
$$

D-branes

- D3-probe-D7
[Mateos-Myers-Thomson'07]

$$
v_{s}^{2}=\frac{1}{3}-\frac{\lambda_{\mathrm{YM}}}{24 \pi^{2}} \frac{N_{f}}{N_{c}}\left(m c+\frac{1}{3} m T \frac{\partial c}{\partial T}\right)
$$

- Also at $m<\mu \neq 0=T$:
[Karch-Son-Starinets'08,Kulaxizi-Parnachev'08]

$$
v_{s}^{2}=\frac{1-(m / \mu)^{2}}{3-(m / \mu)^{2}}=\frac{1}{3}-\frac{2}{9}(m / \mu)^{2}+\ldots
$$

- Consider QCD at finite isopin density
- Can do lattice, no sign problem
- For $\mu_{I}>m_{\pi}$ the pion condenses
- Get larger speeds:

$$
v_{s}^{2}=\frac{1-\left(m_{\pi} / \mu_{l}\right)^{2}}{1+3\left(m_{\pi} / \mu_{l}\right)^{2}} \rightarrow 1, m_{\pi} / \mu_{l} \rightarrow 0
$$

Neutron star mass measurements

- Two-solar-mass stars
[Demorest et al.'10]
[Antoniadis et al.'13]
- Low squishiness
[LIGO/Virgo'17]

Need for speed

- Maximum mass depends on the EoS \rightarrow need stiff
- Bound on v_{s} strongly disfavored

Need for speed

- Relativistic kinetic theory, causality implies (Taub's inequality):

$$
\tau=\frac{\epsilon(\epsilon-3 p)}{\rho_{m}^{2}}>1
$$

- D3-probe-D7:

$$
\tau_{D 7}=\frac{3}{4}\left(1+\frac{m^{2}}{3 \mu_{q}^{2}}\right) \rightarrow \frac{3}{4} \leq \tau_{D 7} \leq 1
$$

- Taub's inequality is violated \leftrightarrow strongly coupled and no quasiparticle description

Breaking bounds in holography

Let's list several cases where $1 / \sqrt{3}$ is exceeded:

- $\mathrm{D} p / \mathrm{Dq}:(n \mid p \perp q)$,
$n=$ common spatial directions $(q \geq p)$
[lots,review:NJ-Ramallo'14]
$v_{s}^{2}=\frac{1}{n+\frac{p-3}{4}(p+q-2 n-8)}$

$D p / D q$	n	$S U S Y$	$v_{s}^{2}>1 / n$
$D p / D(p+4)$	p	\checkmark	$p>3$
$D p / D(p+2)$	$p-1$	\checkmark	$p>3$
$D p / D p$	$p-2$	\checkmark	$p>3$
$D 4 / D 8 / \overline{D 8}$	3	\mathbf{x}	\checkmark
$D 3 / D 7^{\prime}$	2	\mathbf{x}	\mathbf{x}
$D 2 / D 8^{\prime}$	2	\mathbf{x}	\checkmark

- Non-relativistic Lifshitz scaling, get stiff EoS:

$$
\left(t, x^{i=1, \ldots, n}\right) \rightarrow\left(\lambda^{z} t, \lambda x^{i=1, \ldots, n}\right) \Rightarrow p=\frac{z}{n} \epsilon
$$

- $\mathrm{Dp} / \mathrm{Dq}$-like with (Lifshitz optional) hyperscaling violation
[Järvelä-NJ-Ramallo'16]

Breaking it non-trivially

- Common to all above trivial cases: non-CFT in the UV
- With UV AdS, can get

$$
v_{s}^{2}>\frac{1}{3}
$$

- Scalars at finite density $\begin{aligned} & \text { Hoyos-NJ-Rodriguez-Vuorinen'16,Ecker-Hoyos-NJ-Rodriguez- }\end{aligned}$

Vuorinen'17]
(rest of the talk)

- Double trace deformations
[Anabalon-Andrade-Astefanesei-Mann'17]
- Dynamical magnetic field [Grozdanov-Poovuttikul'17]
- Backreacted flavors, flowing down to anisotropic IR

Holographic models that break it non-trivially

- A family of Einstein-Maxwell and charged scalar models

$$
\begin{aligned}
& S=\frac{1}{16 \pi G_{5}} \int d^{5} \times\left(R-L^{2} K(\phi) F^{2}-\left|D_{\mu} \phi\right|^{2}-V(\phi)\right) \\
& D_{\mu} \phi=\left(\partial_{\mu}-i q A_{\mu}\right) \phi, m^{2} L^{2}=\Delta(\Delta-4)
\end{aligned}
$$

- Bottom-up models:

$$
K(\phi)=1, \quad V(\phi) \simeq-\frac{12}{L^{2}}+m^{2}|\phi|^{2}+\frac{V_{4}}{2 L^{2}}|\phi|^{4}+\ldots
$$

- Top-down: $\mathcal{N}=4 \mathrm{SU}\left(N_{c}\right) \mathrm{SYM}$ with $U(1)$ R-charge (three

$$
K(\phi)=\frac{8}{\left(1-|\phi|^{2}\right)^{2}}, \quad V(\phi)=-\frac{12}{L^{2}} \frac{1+|\phi|^{4}}{\left(1-|\phi|^{2}\right)^{2}}
$$

- Finite density $\mu \neq 0$ and break conformal symmetry explicitly by sourcing ϕ

Simplest case

- Start w/V(ϕ) $=-\frac{12}{L^{2}}+m^{2}|\phi|^{2}$
- Technical simplification, we compute $v_{s}^{2} \simeq\left(\frac{\partial p}{\partial \epsilon}\right)_{T}, \mu \gg T$
- All quantities divided by the source: $t_{r}=\frac{T}{m_{0}}$
- Get at most 3% above conformal value
- Need for more speed! Better to go toward $\Delta \rightarrow 3$

Spice up

- Quartic $V(\phi)=-\frac{12}{L^{2}}+m^{2}|\phi|^{2}+\frac{V_{4}}{2 L^{2}}|\phi|^{4}$
- Consider $\Delta=3, q=0, t_{r}=0.1$
- Making V_{4} more negative (positive) increases (decreases) v_{s}
- In the physical window $\left(1 \geq v_{s} \geq 0\right)$:
- Thermodynamically stable ($\chi=\partial^{2} p / \partial \mu^{2}>0$)
- Dynamically stable (QNMs in LHP at $k=0$)

- $q=2, \Delta=3, " V_{4}=-\frac{3}{2}$ "
- Varying dynamically generated scale $\Lambda=m_{0} e^{-\kappa_{1}}$
- Large hierarchy $\Lambda \gg m_{0}$ possible $\rightarrow \epsilon \sim p$ when $\mu \sim m_{0}$
- No instabilities

Conclusions

- There is no bound
- Not trivial to get past $1 / \sqrt{3}$ though, need:
- fine-tuning or
- dynamically generated scale or
- breaking some spacetime symmetry
- Physics understanding for getting stiff EoS
[work in progress w/ Hoyos]
- For neutron star EoS, need to engineer top-down QCD-like model ($q=0$ and baryon charge)
[work in progress w/ Hoyos \& Henriksson]

Thanks to organizers for a great program!

