Need for (sound) speed and holography

Niko Jokela

C.Ecker, C.Hoyos, NJ, D.Rodríguez, A.Vuorinen 1609.03480,1707.00521

Bounding Transport and Chaos in Condensed Matter and Holography NORDITA – 14 September 2018

- Is speed of sound bounded at strong coupling?
- Why do we care?
- In this talk 3+1d, but many comments apply equally well elsewhere

- Speed of sound, equation of state
- e Hints for a bound in holographic models
- Breaking bounds

Intro

$$v_s^2 = \left(\frac{\partial p}{\partial \epsilon}\right)_s$$

- Plays an important role in hydro
- By dim.analysis $p \to T^4$, $T \to \infty$, $\epsilon = T \frac{\partial p}{\partial T} p \to 3p$ and $v_s^2 \to 1/3$
- Approach 1/3 always from below? E.g. in QCD from asymptotic freedom:

$$v_s^2 pprox rac{1}{3} + rac{5N_c}{36\pi}eta(lpha) < rac{1}{3}$$
 .

• What about strongly interacting systems?

Equation of state and stiffness

$$v_s^2 = \left(\frac{\partial p}{\partial \epsilon}\right)_s$$

• Equation of state fixes

$$p = p(\epsilon)$$

• In a CFT

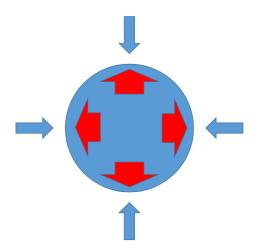
$$\langle T^{\mu}_{\mu}
angle = 0 = -\epsilon + 3 p
ightarrow v^2_s = 1/3$$

• Causality restricts the EoS:

 $p \leq \epsilon$

Equation of state and stiffness

- Compress the fluid and the energy increases
- The pressure also increases which opposes compression
- The larger $\partial p/\partial\epsilon$, the less compressible the fluid is
- The EoS is stiffer (softer) the larger (smaller) v_s



Examples of soft EoS in holography

• First computed in $\mathcal{N}=4$

[Policastro-Son-Starinets'02]

$$v_s^2 = \frac{1}{3}$$

• "Mass deformed $\mathcal{N}=4$ ", $\mathcal{N}=2^*$:

[Benincasa-Buchel-Starinets'05]

$$v_s = rac{1}{\sqrt{3}} \left(1 - rac{\Gamma(3/4)^4}{3\pi^4} (m_f/T)^2 - rac{1}{18\pi^2} (m_b/T)^4 + \ldots
ight) \; .$$

• Klebanov-Strassler $\mathcal{N} = 1$:

[Aharony-Buchel-Yarom'05]

$$v_s^2 = \frac{1}{3} - \frac{2}{9} \frac{1}{\log \frac{T}{\Lambda}} + \dots$$

Class of holographic models and lattice QCD

• For a family of models at high temp [Gubser-Nellore'08,Cherman-Cohen-Nellore'09,Hohler-Stephanov'09]

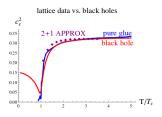
$$S = \frac{1}{2\kappa_5^2} \int d^5 x \left(R - \frac{1}{2}(\partial \phi)^2 + V(\phi)\right)$$
$$v_s^2 \simeq \frac{1}{3} - C(\Delta)(LT)^{\Delta - 4}$$

• Also for several scalars below conformal value

[Cherman-Nellore'09]

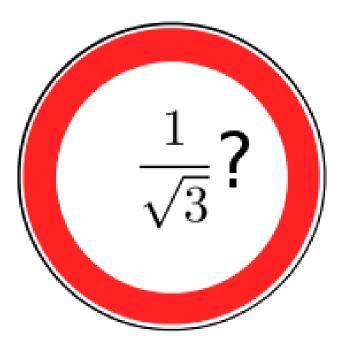
• Scalars at finite density:

$$\left(\frac{\partial p}{\partial \epsilon}\right)_{\mu} \leq \frac{1}{\sqrt{3}}$$



[Yang-Yuan'17]

• D3-probe-D7 $V_{s}^{2} = \frac{1}{3} - \frac{\lambda_{\text{YM}}}{24\pi^{2}} \frac{N_{f}}{N_{c}} \left(mc + \frac{1}{3}mT\frac{\partial c}{\partial T}\right)$ • Also at $m < \mu \neq 0 = T$: [Karch-Son-Starinets'08,Kulaxizi-Parnachev'08] $v_{s}^{2} = \frac{1 - (m/\mu)^{2}}{3 - (m/\mu)^{2}} = \frac{1}{3} - \frac{2}{9}(m/\mu)^{2} + \dots$



- Consider QCD at finite isopin density
- Can do lattice, no sign problem
- For $\mu_I > m_\pi$ the pion condenses
- Get larger speeds:

[Son-Stephanov'00]

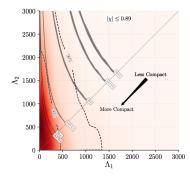
$$v_s^2 = rac{1 - (m_\pi/\mu_I)^2}{1 + 3(m_\pi/\mu_I)^2} \ o \ 1 \ , \ m_\pi/\mu_I o 0$$

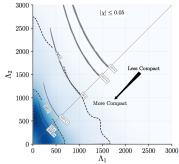
Neutron star mass measurements

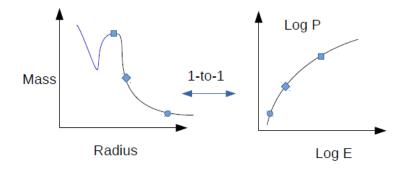
• Two-solar-mass stars [Demorest et al.'10]

[Antoniadis et al.'13]

• Low squishiness [LIGO/Virgo'17]







- $\bullet\,$ Maximum mass depends on the EoS \rightarrow need stiff
- Bound on v_s strongly disfavored

[Bedaque-Steiner'14]

Need for speed

• Relativistic kinetic theory, causality implies (Taub's inequality):

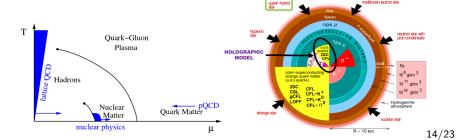
$$\tau = \frac{\epsilon(\epsilon - 3p)}{\rho_m^2} > 1$$

• D3-probe-D7:

$$au_{D7} = rac{3}{4} \left(1 + rac{m^2}{3 \mu_q^2}
ight) \ o \ rac{3}{4} \leq au_{D7} \leq 1$$

traditional neutron star

• Taub's inequality is violated \leftrightarrow strongly coupled and no quasiparticle description



Let's list several cases where $1/\sqrt{3}$ is exceeded:

• $Dp/Dq:(n|p \perp q),$ n=common spatial directions $(q \ge p)$ [lots,review:NJ-Ramallo'14] $v_s^2 = \frac{1}{n + \frac{p-3}{4}(p+q-2n-8)}$ Dp/I Dp/IDp/I

n	SUSY	$v_{s}^{2} > 1/n$
p	√	p > 3
p-1	✓	p > 3
p-2	\checkmark	p>3
3	×	✓
2	×	×
2	×	1
1		
	$\begin{array}{c} p\\ p-1\\ p-2\\ 3\\ 2 \end{array}$	$ \begin{array}{c c} p & \checkmark \\ p-1 & \checkmark \\ p-2 & \checkmark \\ 3 & \bigstar \\ 2 & \checkmark \end{array} $

• Non-relativistic Lifshitz scaling, get stiff EoS:

$$(t, x^{i=1,\dots,n}) \to (\lambda^z t, \lambda x^{i=1,\dots,n}) \Rightarrow p = \frac{z}{n}\epsilon$$

• Dp/Dq-like with (Lifshitz optional) hyperscaling violation [Järvelä-NJ-Ramallo'16]

Breaking it non-trivially

- Common to all above trivial cases: non-CFT in the UV
- With UV AdS, can get

$$v_{s}^{2} > \frac{1}{3}$$

• Scalars at finite density [Hoyos-NJ-Rodriguez-Vuorinen'16,Ecker-Hoyos-NJ-Rodriguez-Vuorinen'17]

(rest of the talk)

• Double trace deformations

[Anabalon-Andrade-Astefanesei-Mann'17]

• Dynamical magnetic field

[Grozdanov-Poovuttikul'17]

• Backreacted flavors, flowing down to anisotropic IR [NJ et al.'18]

Holographic models that break it non-trivially

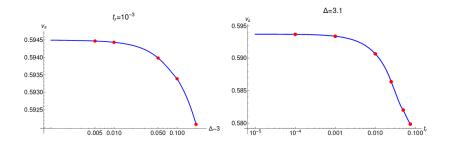
• A family of Einstein-Maxwell and charged scalar models

$$\begin{split} S &= \frac{1}{16\pi G_5} \int d^5 x \left(R - L^2 \mathcal{K}(\phi) F^2 - |D_\mu \phi|^2 - V(\phi) \right) \\ D_\mu \phi &= (\partial_\mu - i \mathbf{q} A_\mu) \phi \ , \ m^2 L^2 = \Delta(\Delta - 4) \end{split}$$

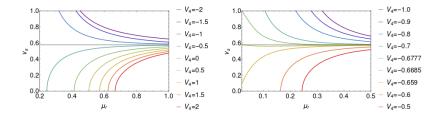
Bottom-up models:

$$\mathcal{K}(\phi) = 1 \;,\; V(\phi) \simeq -\frac{12}{L^2} + m^2 |\phi|^2 + \frac{V_4}{2L^2} |\phi|^4 + \dots$$

- Top-down: $\mathcal{N} = 4$ SU(N_c) SYM with U(1) R-charge (three equal), $\mathcal{L} = \mathcal{L}_{\substack{\mathcal{N}=4\\ [\text{Gunaydin-Romans-Warner'86, Bobev-Kundu-Pilch-Warner'10]}}$ $\mathcal{K}(\phi) = \frac{8}{(1-|\phi|^2)^2}$, $V(\phi) = -\frac{12}{L^2}\frac{1+|\phi|^4}{(1-|\phi|^2)^2}$
- Finite density $\mu \neq 0$ and break conformal symmetry explicitly by sourcing ϕ

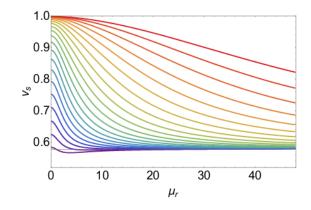


- Start w/ $V(\phi) = -\frac{12}{L^2} + m^2 |\phi|^2$
- Technical simplification, we compute $v_s^2 \simeq \left(rac{\partial p}{\partial \epsilon}
 ight)_{m{ au}}, \mu \gg T$
- All quantities divided by the source: $t_r = \frac{T}{m_0}$
- Get at most 3% above conformal value
- \bullet Need for more speed! Better to go toward $\Delta \to 3$



- Quartic $V(\phi) = -\frac{12}{L^2} + m^2 |\phi|^2 + \frac{V_4}{2L^2} |\phi|^4$
- Consider $\Delta = 3, q = 0, t_r = 0.1$
- Making V_4 more negative (positive) increases (decreases) v_s
- In the physical window $(1 \ge v_s \ge 0)$:
 - Thermodynamically stable ($\chi=\partial^2 p/\partial \mu^2>0$)
 - Dynamically stable (QNMs in LHP at k = 0)

Top-down model



•
$$q = 2, \ \Delta = 3, \ "V_4 = -\frac{3}{2}$$
"

- Varying dynamically generated scale $\Lambda = m_0 e^{-\kappa_1}$
- Large hierarchy $\Lambda \gg m_0$ possible $\rightarrow \epsilon \sim p$ when $\mu \sim m_0$
- No instabilities

- There is no bound
- Not trivial to get past $1/\sqrt{3}$ though, need:
 - fine-tuning or
 - dynamically generated scale or
 - breaking some spacetime symmetry
- Physics understanding for getting stiff EoS

 For neutron star EoS, need to engineer top-down QCD-like model (q = 0 and baryon charge) [work in progress w/ Hoyos & Henriksson]

[[]work in progress w/ Hoyos]

Thanks to organizers for a great program!