

Bounding Transport and Chaos in Condensed Matter and Holography Nordita, Stockholm September 4th 2018

Hall number and other anomalies in the strange metal phase of overdoped cuprates

Nigel Hussey

LNCMI-T, Toulouse

Cyril Proust Baptiste Vignolle

Stanford / Berkeley

James Analytis Ian Fisher

NHMFL, Los Alamos

Ross McDonald

ISTEC, Tokyo S Adachi

Kyoto

Yuji Matsuda Shigeru Kasahara

Radboud, Nijmegen

Salvatore Licciardello Jake Ayres Jonathan Buhot Jianming Lu

Bristol

Tony Carrington Brendan Arnold Sven Friedemann **Carsten Puztske** Stephen Hayden Patrick Rourke

Tokyo Taka Shibauchi

Tohoku

Yoichi Tanabe Tadashi Adachi Yoji Koike

AMES, Iowa

Takeshi Kondo Adam Kaminski

St. Andrews / Dresden

Andrew Mackenzie

ISTEC, Tokyo Setsuji Adachi

- (i) Introduction
- (ii) Hole-doped cuprates
- (iii) Pseudogap
- (iv) Hall number in strange metal phase
- (v) Conclusions

• High-*T_c* superconductivity borne out of the strange metal phase

• High-T_c superconductivity borne out of the strange metal phase

- High- T_c superconductivity borne out of the strange metal phase
- Strange metal characterized by an extended (doping) range of *T*-linear resistivity that is distinct from conventional QC metals

- High- T_c superconductivity borne out of the strange metal phase
- Strange metal characterized by an extended (doping) range of *T*-linear resistivity that is distinct from conventional QC metals

Radboud University

n for Scientific Research

Suppressing superconductivity in a high magnetic field confirms QC behaviour

Chalcogenides

Licciardello, NEH *et al., Submitted* (18)

- High- T_c superconductivity borne out of the strange metal phase
- Strange metal characterized by an extended (doping) range of *T*-linear resistivity that is distinct from conventional QC metals
- Bad metallic transport is a high-*T*, high-energy phenomenon, but strange metal transport may be a low-energy phenomenon

NEH, Takenaka & Takagi, Phil. Mag. 84, 2847 (04)

- High- T_c superconductivity borne out of the strange metal phase
- Strange metal characterized by an extended (doping) range of *T*-linear resistivity that is distinct from conventional QC metals
- Bad metallic transport is a high-*T*, high-energy phenomenon, but strange metal transport may be a low-energy phenomenon
- The many recent claims of conventional QC behavior near p* in hole-doped cuprates still need to be rigorously explored
- Here, I will introduce a **new aspect** of the strange metal physics of overdoped cuprates, relating to the **Hall number**.

Hole-doped cuprates

The enigmatic pseudogap in hole-doped cuprates

The enigmatic pseudogap in hole-doped cuprates

Thermodynamics of the pseudogap

Loram et al., APS March Meeting (07)

Loram et al., APS March Meeting (07)

Thermodynamics of the pseudogap

- Can be modelled with *d*-wave form consistent with presence of Fermi arcs
- Leads to marked reduction in U(0)

More significantly, there appears to be a permanent entropy loss implies <u>states-non-conserving gap</u>.

Loram et al., APS March Meeting (07)

*Transition in Hall number across p**

Measurements of Hall coefficient in T = 0 limit (in high magnetic fields) show a sharp transition from 1 + p to p across p^* , interpreted as a sudden loss of charge carriers — most likely those states near the zone boundary.

Radboud University

Scientific Research

*Transition in Hall number across p**

TI2201 is extremely electronically homogeneous

1.2 -(a) (b) 90K 90K 1.1 -60K 60K Modelling R_{H} (mm³/C) 40K 40K 20K 1.0 -20K 10K 10K 4K 4K 0.9 1+*p* 0.8-100 0 50 0 5 10 $\mu_0 H / \rho_{xx}^0 (T/\mu\Omega cm)$ $\mu_{o} H(T)$

Putzke et al., in preparation

$$\sigma_{ij} = \frac{e^3 B}{2\pi^2 \hbar^2 c \omega_c^2} \int_0^{\pi} d\phi \int_0^{\infty} d\phi' v_j(\phi) v_j(\phi - \phi') e^{G(\phi - \phi') - G(\phi)}$$

 $G(\phi) = \int d\phi / [\omega_c(\phi)\tau(\phi)]$

$$\sigma_{ij} = \frac{e^{3}B}{2\pi^{2}\hbar^{2}c\omega_{c}^{2}} \int_{0}^{\pi} d\phi \int_{0}^{\infty} d\phi' v_{j}(\phi) v_{j}(\phi - \phi') e^{G(\phi - \phi') - G(\phi)}$$

$$G(\phi) = \int d\phi / [\omega_c(\phi)\tau(\phi)]$$

Conclusions

- Reduced Hall carrier density in the overdoped strange metal regime of cuprate superconductors
- Anti-correlated with the growth of the *T*-linear resistivity
- Suggestive of two-fluid charge dynamics in strange metal phase
- Loss of Hall carrier density persists beyond p* unlikely to be due to pseudogap or Fermi arc formation
- May be connected to coherent-incoherent crossover within strange metal phase

