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Motivation and three examples:
weak-strong coupling interpolation for
1) Zero-temperature observables

2) Thermodynamic observables

3) Transport



Motivation: ongoing experimental programs and theoretical
advances of the last two decades

Experiments:

Experiments on heavy ion collisions at RHIC (2000-current) and LHC (2010-current)
(relativistic, “many-body”, strongly interacting, non-equilibrium “hot” system)

Romatschke and Romatschke, “"Relativistic Fluid Dynamics Out of Equilibrium : Ten Years of Progress in Theory and Numerical Simulations
of Nuclear Collisions," arXiv:1712.05815 [nucl-th]. Busza, Rajagopal and van der Schee, “"Heavy lon Collisions: The Big Picture, and the
Big Questions,” arXiv:1802.04801 [hep-ph].

Experimental realization (1995-1999) of new classes of quantum “many-body” systems
(e.g. ultra-cold atomic Bose and Fermi gases),
current extensive study of their collective behavior
(non-relativistic, “many-body”, strongly interacting, non-equilibrium “cold” system)

Theory:

Gauge-string duality: A “new” (1997) non-perturbative tool to study strongly interacting

guantum systems
(zero or finite temperature/density, relativistic and non-relativistic, equilibrium and
non-equilibrium — but for limited class of theories/parameters)



N — 4 supersymmetric YM theory

Gliozzi,Scherk,Olive’77
Brink,Schwarz,Scherk’77

 Field content:

A, ®; ¥4 allin the adjoint of SU(N)

e Action:
1 g | R 5 1 2
5 — g%M/dxtr{§FW+(D#<I>I) e

+4UT*D, ¥ — O [®;, \IJ]}

e Large N: effective coupling = ‘t Hooft coupling ) = g%, N

(super)conformal field theory = coupling doesn’t run



Interpolation between weak and strong coupling:
exact results are rare (even at T=0)...

Example (old & beautiful): expectation value of a circular Wilson loop in
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Erickson, Semenoff and Zarembo (2000)




Energy density vs temperature for various gauge theories
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Figure: artist’s impression based on LQCD, from Myers and Vazquez, 0804.2423 [hep-th]



Pressure in perturbative QCD
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Entropy density of N/ = 4 SYM in the planar limit (N — oo)

S/So N = 4 super-Yang-Mills
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Viscosity-entropy ratio in Unitary Fermi gas
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G.Vlazlowski, P.Magierski, J.E.Drut, arXiv:1204.0270 [cond-mat.quant-gas]
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Shear viscosity in A/ = 4 SYM

N 1 perturbative thermal gauge theory
| A2 log % S.Huot,S.Jeon,G.Moore, hep-ph/0608062
s
L1 1 15¢(3) 1
. + R
., 47 4 N3/
.......... —
0
0 A= g2N.

Correctionto 1 /47T: Buchel, Liu, A.O.S., hep-th/0406264

Buchel, 0805.2683 [hep-th]; Myers, Paulos, Sinha, 0806.2156 [hep-th]



Plan

Transport properties and analytic structure of correlation functions
in weakly interacting many-body quantum system (particles or quasiparticles)

Transport properties and analytic structure of correlation functions
in strongly interacting many-body quantum systems (from holography - dual gravity)

Real systems are at intermediate coupling (e.g. QGP)

The problem of interpolation between weak and strong coupling is non-trivial

We compute (inverse) coupling corrections using two dual higher-derivative
actions - 2 (Gauss-Bonnet) and R4 (dual to N=4 SYM)
and argue that results are consistent with expectations from (interpolated)
weak coupling calculations



Weak coupling




Hydrodynamic regime in kinetic theory

Hierarchy of times (e.g. in Bogolyubov’ s kinetic theory)

Tm ft Lt KL Tea:z'stence

0 Tinter Tmft Trelax t
Mechanical Kinetic Hydrodynamic Equilibrium
description theory approximation thermodynamics

Hierarchy of scales

bt <o L

(L is @ macroscopic size of a system)



The hydrodynamic regime (continued)

Degrees of freedom
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Relaxation time in kinetic theory

Kinetic equation 57 — e it B C|F]
Linearized by E(t,r,p) = Fo(r,p) [1 + ¢(t,r, p)]
dp pi Op  OU(r) Oy
R g ~ + : + [
Leads to Y Sl Gl o, ol¢]
For spatially homogeneous distributions: 90(?5, p) T €_Vth(p)
Eigenvalue problem: —vh = Lolh]

Solution: o(t, p) = Z Cne_ynthn(P)



Spectrum of linearized kinetic operator
(at zero spatial momentum, i.e. all hydro modes are at 0)

Wang Chang & Uhlenbeck (1952), Grad (1963)

a) | b) <) d)

Ymin

Ymin
Ymin

a) Discrete spectrum, U = a/r?
b) Continuous spectrum with a gap, U = a/r", n >4
c¢) Continuous gapless spectrum, U = «/r", n <4

d) Hod spectrum



Relaxation time in kinetic theory (continued)

0t p) =Y Cne " thn(p)

—vh = Lo[h]

The hierarchy of relaxation times is determined by the spectrum
of the linearized kinetic operator

TR = 1/szn

For weakly inhomogeneous systems:

A cnmsaicns Q0 (EEdieas e sl

Ot - m Or® ort Op; TR

Krook-Gross-Bhatnagar (KGB) equation (1959) a.k.a. “RTA”

Transport is then essentially determined by the relaxation time, e.g. shear viscosity is

i oo



Of course, the situation is significantly more complicated
for generic weakly interacting quantum systems (relativistic or not)
at finite temperature and/or density

Resummations typically lead to effective kinetic theory (AGD, Popoy,
AMY++). Transport is determined by the spectrum of kinetic operator.
Partial results exist, yet e.g. the analytic structure of correlators of
gauge-invariant operators is generically unknown (but see recent work
by Guy D. Moore, 1803.0073).

G.D.Moore, Stress-stress correlator in phi*4 theory: Poles or a Cut?,” arXiv:1803.00736 [hep-ph].

A.Kurkela and U.A.Wiedemann, "Analytic structure of nonhydrodynamic modes in kinetic theory,"
arXiv:1712.04376 [hep-ph].

P.Romatschke, “'Retarded correlators in kinetic theory: branch cuts, poles and hydrodynamic onset
transitions," [arXiv:1512.02641 [hep-th]].



Strong coupling




4-dim gauge theory —large N,
10-dim gravity strong coupling

g ~HolOgraphically dual system
in thermal equilibrium

THawking SBekenstein-Hawking — T S

Gravitational fluctuations

(and fluctuations of other fields) — Deviations from equilibrium
9 + Py —
A +a,, ji=—D08;° + -
"0 hyw =0 "May =0 PN 07 + 8;5° =0
and B.C.
Quasinormal spectrum PN

w= —iDg® + - -

Birmingham, Sachs, Solodukhin, 2001; Son and AOS, 2002



In quantum field theory, the dispersion relations such as

3t i 2 4 >
em el o <3"+<> i

appear as poles of the retarded correlation functions, e.g.

q2 T4

w2 — q2/3 + iwq? /37T

(Too(k) Too(—k)) ~

- in the hydro approximation - Gritlisel i M e



Fluid dynamics is an effective theory valid in the long-wavelength, long-time limit

Fundamental degrees of freedom = densities of conserved charges

Equations of motion = conservation laws + constitutive relations”*

Example |
daid =4
Joo X 0
Example I
8aTab ==(j Navier-Stokes eqs

Burnett eqgs

T = euu’ + P(e) (¢*° + u®u®) + O* + - -

* Modulo assumptions e.g. analyticity

** E.o.m. universal, transport coefficients depend on underlying microscopic theory



Consider relativistic neutral conformal fluid in a d-dimensional (curved) space-time
TR —eful P (E) gl A R
Including only terms with first and second derivatives of fluid velocity:

Hab: —770'ab
1
¢~k

ik {R<ab> — (d — 2)ucRC<ab>dud}

+ 11 [<Daab> - S u)]

i )\10’<a60'b>c 0 )\20_(0,69@0 s )\BQ(aCQb>c

Transport coefficients (in conformal case): 1), 711, K, A1 : Ao ; A3

Non-conformal case: 2 first order coefficients, 15 (10) second order coefficients
(see S.Bhattacharyya, 1201.4654 [hep-th])



Beyond second order hydrodynamics

Tensors structures appearing in the derivative expansion have been analyzed using
computer algebra in 1507.02461 [hep-th] by Grozdanov & Kaplis.

At third order, there are 20 relevant structures in the conformal case
and 68 in the non-conformal one.

This still needs an entropy current analysis similar to the one in
S.Bhattacharyya, 1201.4654 [hep-th]

Example: dispersion relations in conformal case

e 5 27-' 91
it e o [(2+PH)2 5 2(5+P)] R b
i 17,2 I 2 3 .| 8n°T 6,46 A
@rsedhtaal R $2CS(F—2(:STH)/€ —Z[Q(Q—PH)Q—S(EJrlg)}k Rl 2

Here 6821/\/-3— I'=n/(c+ P)



Notations used in the derivative expansion
D =u*V,
Aab — gab - uaub

1
AacAbd (Acd i Adc) o AabACdAcd — <Aab>

ALl =
d=1

1
2
o = 2{yay®
ab 1 ac A bd
Q% = ZA%AM (Veug - Vau)

*Hydro definitions differ in the literature — see footnote 91 on page 128
of M.Haehl, R.Loganayagam, M.Rangamani, 1502.00636 [hep-th]
See Appendix B in S.Grozdanov, AOS, 1611.07053 [hep-th]



Computing transport coefficients from “first principles”

Fluctuation-dissipation theory
(Callen, Welton, Green, Kubo)

Kubo formulae allows one to calculate transport
coefficients from microscopic models

l=—=tgilne —/dtdSwewthxy(t 105 Txy(o O)b

w—0 2w

In the regime described by a gravity dual the correlator
can be computed using gauge theory/gravity duality



Kubo formulas for second order transport coefficients

First order transport coefficients can be computed from two-point functions
of the corresponding operators using Kubo formulas

Hec= ol Hn —/dtd3$€7’wt<{Tazy(t z), Ty (O, O)D

w—0 2w

Similarly, second transport coefficients can be computed from three-point functions

82 A T oy e A
Ao = 217 — 4p1(111£>10 p0dg? GR?{ZXX’ (p,q)

Moore, Sohrabi, Saremi, 2010, 2011; Arnold, Vaman, Wu, Xiao, 2011

Schwinger-Keldysh generating functional

(—i)"— 1 (—20)"6" W
5ha a5(0)0hR ca(2) - ..

G s = (TP E Y E S s )

h=0

B
W [h",h7] =In / D¢ D~ Dsoexp{ kAT S e E e / d*yLr [p(y)] —i | d'z7 v/ ~g L

0



How to compute second order transport coefficients?

Fluid-gravity correspondence [Bhattacharyya et al, 2007]
Quasinormal spectrum [Baier et al, 2007]

Kubo formulas & three-point functions
[Moore, Sohrabi, Saremi, 2010, 2011; Arnold, Vaman, Wu, Xiao, 2011]



First and second order transport coefficients of conformal
holographic fluids to leading order in supergravity approximation

s
d 1 9
1 i
m= gz (1 e+ (3)]).
Hietiem
e
dn
A
hizs nT’
L
0) = RO d 27TT7
A3 =0

Bhattacharyya et al, 2008

Note: 2?77'1‘[ B 4)\1 e )\2 =556}



Cuts versus poles: a mystery

Singularities of a Green’s function in the complex frequency plane

Imto Imto
=4 q Ret Reto
annmaprensprorererore  — (AT
e — 87T ° °
swovsaspuossornsns — 127
ananerenaronyone — i1 G
Weak (vanishing) coupling Strong (infinite) coupling
Hartnoll, Kumar (2005) AOS (2002)

We should be able to interpolate between the two limits...



Coupling constant corrections to N=4 SYM transport coefficients
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Curvature squared corrections to transport coefficients
of a (hypothetical) strongly coupled liquid
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Gauss-Bonnet corrections to transport coefficients
of a (hypothetical) strongly coupled liquid
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Brigante, Myers, H.Liu, Myers, Shenker, Yaida, 2008 Shaverin, Yarom, 2012
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Non-perturbative Gauss-Bonnet corrections to transport coefficients
of a (hypothetical) strongly coupled liquid
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Poles (blue) and zeros (red) of a typical retarded correlator
at infinite coupling (dual gravity results)
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Singularities of stress-energy tensor Green’s function
at infinite (black dots) and finite (black crosses and diamonds)
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Earlier work: Stricker, 1307.2736 [hep-th]; Waeber, Schafer, Vuorinen and Yaffe, 1509.02983 [hep-th].
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Quasinormal spectrum of Gauss-Bonnet black brane

AdS-Schwarzschild black brane (numerical data)
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Singularities of stress-energy tensor Green’s function
in different regimes of viscosity-entropy ratio (shear channel)
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White squares: poles at infinite coupling
Crosses: poles at finite coupling



On the “unreasonable effectiveness” of kinetic theory at strong coupling
Recall that in kinetic theory n = const sTrT

What happens at large but finite coupling, with 7 = 1/|Im wg| ?

¢¢¢¢¢¢¢+¢++++++HD%%++
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Breakdown of hydrodynamics at (large) finite coupling
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Kinetic theory (relaxation time approximation)
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“Applicability of hydrodynamics” as a function of coupling
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Transport peak of spectral functions at large finite coupling

n = lim —/dt d3a;e7“Wt<{Txy(t ), Txy (O, O)b

w—0 2w

_ 4 —ikx _ R
Viscosity is determined by the height of the peak of the spectral function at w=0.
The peak is affected by the singularities of the correlator in the complex w plane.

What kind of singularities? Are they the same at weak and strong coupling?



Transport peak in QCD at finite temperature (sketch)




Transport peak of spectral functions at large finite coupling
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Linear instability of black brane backgrounds in higher-derivative gravity

Coupling constant corrections to the entropy, viscosity, correlators etc are coming from

1

2/-4;10
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The corrected 5d metric is

(nEL)~

) L2du2
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a(u) = —15v (5u® + 5u* — 3u®) b(u) = 157y (5u® + bu* — 19u°)

Gubser, Klebanov and Tseytlin, hep-th/9805156; Pawelczyk and Theisen, hep-th/9808126

Linear metric fluctuations satisfy e.o.m. of the type
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This can be re-written in Eddington-Finkelstein coordinates as

s iy B S ; :
—@@ (751,&) — 2wV I + Verrp =0

The sign of the imaginary part of an eigenfrequency is determined by
(Horowitz and Hubeny, 1999)

1

wPlpWF [ du
Imian: e /\/E

(| % + Vere|v]?)

~10 i 0 5 10
Re w

The instability seems to be generic.

Konoplya and Zhidenko, 2017; Grozdanov, Gushterov, AOS, 2018



Critical momentum vs (inverse) coupling in N=4 SYM
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Conclusions & open questions

Finite coupling corrections seem to show qualitatively similar behavior irrespective of the
precise structure of higher derivative terms in dual gravity (we did R*2 and R*4)

How robust are the results (structure of higher derivative expansion)?

We observe breakdown of hydrodynamics at coupling-dependent value of a wave-vector. The
dependence on coupling suggests that hydrodynamics has a wider applicability range at
stronger coupling

Our results suggest that kinetic theory results may be formally still applicable
in the intermediate and strong coupling regime
where the use of kinetic theory itself cannot be justified. In particular, transport peak
is visible at large finite coupling due to inflow of poles. Compare to pQFT?

We observe qualitatively different analytic structure of correlators depending on whether
n/s > 1/4worn/s < 1/4m

We observe linear instability of the dual metric at finite coupling. Need to explain this.
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