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e Resistivity is linear over a large range of temperatures.

e Exceeds the Mott-loffe-Regel “limit” at high enough T, where the
semiclassical mean-free-path becomes smaller than a lattice
spacing, no signs of saturation even at highest possible T.



Strange metals: Theoretically challenging
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The strange metal is not a weakly interacting Landau Fermi liquid.

Metals with strong interactions in 2+1 dimensions and a finite density of electron states are usually

not amenable to controlled field-theoretic calculations, due to the large number of gapless modes
on a Fermi surface.

Even if controlled, a continuum field-theoretic description is not good enough for transport, need to
consider how momentum is relaxed as well.

Field-theoretic situation has so far been nearly hopeless when disorder is added on top of the
mess.



SYK Model: Solvable Non-Fermi liquid at a point

N —o0

H = Z J@jklf;f;fkfl, {szafj}:(Sij
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< Jijkl >=0 < |Jz'jkl’2 >= J2/(8N3)

* Consists of large-N number of sites on a single “quantum dot”, with random all-to-all interactions.
* The hamiltonian has no quadratic kinetic terms.

* The randomness self-averages in the large-N limit, leading to a gapless non-Fermi liquid ground
state.

X(r) = —J*G*(1)G(~7),
G(iwy,) = - !

iwn — B(itwy)

S. Sachdev and J. Ye, PRL 70, 3339 (1993)
S. Sachdev, PRX 041025 (2015)
A. Kitaev, Unpublished



SYK Model: Solvable Non-Fermi liquid at a point
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* Consists of large-N number of sites on a single “quantum dot”, with random all-to-all interactions.

* The hamiltonian has no quadratic kinetic terms.

* The randomness self-averages in the large-N limit, leading to a gapless non-Fermi liquid ground
state.

(1) = =G ()G (=),
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(fn) = twy, — B (iwy) (at T=0) V' |wnl

S. Sachdev and J. Ye, PRL 70, 3339 (1993)
S. Sachdev, PRX 041025 (2015)
A. Kitaev, Unpublished



Lattice of SYK Models
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Lattice of SYK Models
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Lattice of SYK Models

t> J, LG(k,T) = —%V(O)Sgn(wn)v

ZR(w T = 0)] < w?, Fermi liquid.

‘ () =T e
SYK interaction is irrelevant in the low-

energy limit. Resistance comes from weak
Inelastic, momentum non-conserving

.I .I .I scattering of plane-wave states.

X.-Y. Song, C.-M. Jian and L. Balents, PRL 119, 216601 (2017)
P. Zhang, PRB 96, 205138 (2017)
D. Chowdhury, Y. Werman, E. Berg, and T. Senthil, PRX 8, 031024 (2018)




Lattice of SYK Models

t<J, T<t?)J

SYK interaction is irrelevant in the low-
energy limit. Resistance comes from weak

iInelastic, momentum non-conserving
scattering of plane-wave states.

p(T)~T* L = Ly
Renormalized Fermi liquid at low
‘ ‘ ‘ temperatures, with £ < 1.

X.-Y. Song, C.-M. Jian and L. Balents, PRL 119, 216601 (2017)
P. Zhang, PRB 96, 205138 (2017)
D. Chowdhury, Y. Werman, E. Berg, and T. Senthil, PRX 8, 031024 (2018)




Lattice of SYK Models

t<J, T>>t*/J
Independent SYK dots coupled by weak
hopping. Conductance occurs through
weak tunneling between localized states.

‘ ‘ ~ w12 1 Kubo formula
— p(T) ~ T(J/t*)(h/e*) > pyir ~ h/e>.
L < Ly

But this “incoherent metal” is not a good
model for the linear-in-T resistivity
observed at low temperatures, which is
smaller than the MIR limit...

X.-Y. Song, C.-M. Jian and L. Balents, PRL 119, 216601 (2017)
P. Zhang, PRB 96, 205138 (2017)
D. Chowdhury, Y. Werman, E. Berg, and T. Senthil, PRX 8, 031024 (2018)




Lattice of SYK Models: [ ow temperature linear-in-1
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Add “exchange” interaction between sites.

In the Fermi liquid regime, this doesn't affect
the previous result qualitatively.
2
p(T) ~T

t > max(J, g) I —7
— L0

A. A. Patel et. al., Unpublished



Lattice of SYK Models: [ ow temperature linear-in-1

But now we can cut /weaken hopping

bonds on some dilute, evenly distributed,
set of sites. These sites become isolated

SYK models (feedback of the other
electrons on these sites is sub-leading).
But, exchange interaction with these sites

leads to non-trivial self energy for the rest
A. A. Patel et. al., Unpublished

of the electrons.



Lattice of SYK Models: [ ow temperature linear-in-1

Gsvic ~ sgn(wn)lwal / G ~ sgn(w).
k

Y(0) ~ wyp In|w,|

Kubo formula — p(T) ~ (const. + (¢°T/(t*J)))(h/e?)

L < Ly
“Marginal Fermi liquid” (MFL) with momentum
dissipation. Cy ~T'InT.

Resistivity is linear-in-T down to 7 = 0, and smaller than the MIR value.
Conduction occurs due to non-quasiparticle plane wave states. A true non-Fermi
liquid.




Lattice of SYK Models: [ ow temperature linear-in-1

* |dealization where the logic on the previous slide works exactly, without
any residual resistivity at T = 0. No weak localization at large-N.
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Locally and randomly
couple a sea of itinerant
electrons to a lattice of SYK
“Islands”. Realizes MFL of
itinerant electrons.

A. A. Patel, J. McGreevy, D. P. Arovas and S. Sachdey,
Phys. Rev. X 8, 021049 (2018)




otrange metals just got stranger...
B-linear transverse magnetoresistance and scaling between B and T!7
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Magnetotransport: Marginal-Fermi liquid

* Thanks to large N,M, we can also exactly derive the linear-response
Boltzmann equation for non-quantizing magnetic fields in the “idealized” MFL
model...

(1 — 9, Re[Sh(w)])0son(t, k,w) + vek - E(t) np(w) + vp(k x B2) - Vidn(t, k,w) = 26n(t, k, w)Im[E5 (w)],
(B =eBa?/h) (i.e. flux per unit cell)

MFL __ U%V(O) * dEy o [ B —Im[ZC (E£1)]
oL =M /mWSQCh <2T> Im[X (E1)]2 + (vp/(2kp))2B2’
MFL _ vpv(0) [ dEy 5 (E; (vr/(2kr))B
on = M= er /_OO o ek (ﬁ) Im[X (E1)]2 + (vp/(2kF)) 282

op "~ T sp((vr/kp)(B/T)), o = ~ BT *su((vr/kr)(B/T)).

sp.a(r — o00) oc1/2%, sppg(x — 0) o2’

Scaling between magnetic field and temperature in orbital magnetotransport!



Macroscopic magnetotransport in the MEL

* et us consider the MFL with additional macroscopic disorder (charge
puddles etc.)

I
Figure: N. Ramakrishnan et. al., PRB 96, 224203 (2017)

* No macroscopic momentum, due to momentum relaxation at the microscopic
level, so equations describing charge transport are just

V- I(x)=0, I(x)=0(x) E(x), E(Xx)=-V&(x).

* Very weak thermoelectricity for large FS, so charge effectively decoupled from
heat transport.



Random-resistor network: physical picture
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sample.
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 Hence, fluctuations in the local Hall
resistance lead to a distortion of the
current path due to charge
conservation, which contributes the

X local Hall resistance, which is linear in

B to the global longitudinal resistance.

Figure 3 Visualization of currents and voltages at large magnetic field ina 10 x 10
random network of disks with radii 1 (arbitrary units), where the potential difference
U= —1V. The black arrows represent the currents, and arrow size depicts the
magnitude of the current. The major current path is perpendicular to the applied voltage
for a significant proportion of the time, which implies that the magnetoresistance is
provided internally by the Hall effect, which is therefore linear in H.

Exact numerical solution of charge-transport equations in a random-resistor
network. (M. M. Parish and P. Littlewood, Nature 426, 162 (2003))



Solvable toy model: two types of resistors

.........?.li“......  Two types of domains a,b with different carrier densities

Sosesooecceceseseces  and lifetimes randomly distributed in approximately
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88880082828008880008 - Effective medium equations can be solved exactly
20020000020000200009 (A. M. Dykhne, JETP 32, 348 (1971))
0000000000020 (V. Guttal and D. Stroud, PRB 71, 201304 (2005))
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Ya.p ~ 1" (i.e. effective transport scattering rates)

P7 ~ \/61T2 + coB? (Hayes et. al.’s result!)

Scaling between B and T at microscopic orbital level has been transterred to global MR!



Strange metals with dynamic gauge fields

Strange Metal

Temperature

Pseudogap

"
Superconductivity
\ 7 hi acp
= -
doping

e Pseudogap Fermi surface looks like it's reconstructed by long-range
antiferromagnetism (AFM) in ARPES, but no AFM is measured by neutron scattering.

e S. Sachdev: Electrons are fractionalized into gapped bosonic spinons and gapless
fermionic chargons. An SU(2) gauge redundancy in this description, and the
suppression of 21 vortices in the AFM landscape, allows the chargons to be subject
to an effective long-range AFM order that shows up only as short-range fluctuating
AFM for the electrons. However, the electron spectral function tracks that of the
chargons, and they look like they have AFM, without having any actual AFM.

S. Sachdey, arXiv:1801.01125 (Review).



Strange metals with dynamic gauge fields
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* The strange metal in this description is an “Algebraic charge liquid” (ACL)

with a finite density of chargons coupled to fluctuating SU(2) gauge fields.
It doesn’t have any controlled field-theoretic description.

* “Higgs transitions” that involve condensing the equivalent of the AFM
order parameters for the chargons break the SU(2) eventually down to Z»
and form the pseudogap, which is a weakly-interacting Fermi liquid
without any singular gauge fluctuations.

S. Sachdey, arXiv:1801.01125 (Review).



Strange metals with dynamic gauge fields:
SYK-like toy model|
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A. A. Patel and S. Sachdey,
arXiv:1807.04754 (Phys. Rev. B, In press) t L

* Clustered random all-to-all hopping model of fermionic
chargons coupled to dynamic U(1) gauge fields. Has a
large-N number of clusters, with a large-M number of
orbitals per cluster. The ratio M/N is an O(7) number.

* Unlike the SYK models, this model combines both hopping
and interaction effects.



Strange metals with dynamic gauge fields:
SYK-like toy model|

The model again self-averages in the large-M, N limits. Disorder averaged action after
expanding e*4ii to keep only IR-relevant terms:

/ dTZfoa 0, +iA%(7)) fia()

1=1 a=1

ey [ drar [1+z<Aij<T>—Aij<T’>>—%Aé( )= 345 + A7) A1) | Gyl = 7)Galr” = 7

1)=1 ’L<j

—M/deT ZE T—1') (7" —7) Zfzoz f;a( -+ “Maxwel ’ termS

Varying w.r.t. G and Y, for each cluster i after integrating out A (which can be done
easily in the large-N limit) and 7yields SYK-like Dyson equations for the large-M,N
saddle-point solution.

J ! 7 ! . l 16 g 2 . l 100 g 2
‘ L J
’ ’ 2 2
‘~-—’ ‘~-—’ ‘~-—’
of of of
ij ij ij



Strange metals with dynamic gauge fields:
SYK-like toy model|

M 1
: 42 : : : : .
(i) =t TF g G (iwn)G(iwn +12m), G(iw,) = -

iwn, — 2(iwy)

No SL(2,R) invariance like SYK, but still possesses a scale-
invariant solution in the IR.



Strange metals with dynamic gauge fields:
SYK-like toy model|
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N(iwy) = t*G(iwy,) This term cancels at T = 0.

Power-law Green’s function with tunable exponent at 7 = 0.
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Strange metals with dynamic gauge fields:
SYK-like toy model|

Scaling solution at finite T, but the scaling function is not the conformal
SYK scaling function, and is determined numerically.

. C W, 1
Giwy, T) = Py Fq (?) . Fa(y —0) < y’, Fg(y — 00) o el
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Strange metals with dynamic gauge fields:
SYK-like toy model|

e \We can add spatial structure to the theory by defining each the clusters i/ to lie on the
sites of a large-N-dimensional hypercubic lattice with nearest-neighbor hopping,
without changing the saddle point.

e Then, splitting the chargons into two species &+, coupling to the internal gauge fields A
with opposite charges, we can derive transport properties in linear response to an
external gauge field =, to which the chargons couple with equal charges. This is the
structure of a U(1) ACL (See S. Sachdev, arXiv:1801.01125).

Hl: QMN 1/2 Y Y Y taﬁf;ras i /fJBS

(i) af=1ss'==x

e \We get non-Fermi liquid conductivities from linear response to =



Strange metals with dynamic gauge fields:
SYK-like toy model|

e \We can also couple the chargons and the gauge fields to charge-2 complex scalar
Higgs fields

HY = QMN 1/2 Y Y Y taﬁf’jozs ZSAijfjﬁS

(ij) af=1s==

t2

Mr|H|* + gn (H Z Yoi fia— +h. )] — %H > [HyHje* 5 +h.c]
(7)

e The Dyson equations at the large-M,N saddle point are

dQp,  G(iwy, + 12,) — G(iw,) Gliw,) = iy, — 2 (twy,)

Y (iw,) = t2G (iw, +t2T/ = , , , ,
(fen) = G iton) or 02 /g2 + T1(i0,) + A |H (i — S(ion))? — g3 |HP?

N dw,, 2 2N t
H [’r — —tH ‘I‘/ - IH 5 / il = 07
M 21 (iwn — X(iwn))? —gHIHI 21 02, /g2 +T1(iQ,) + 4t g | H|?

M [d n
zQ — 2t / v G (iwn) (G(iwy, + Q) — G(iwn))

e The parameter rtunes the Higgs transition. Condensing the Higgs field breaks the
U(1) gauge invariance down to Z2, and gaps out its singular low-energy fluctuations.



Strange metals with dynamic gauge fields:

r

SYK-like toy model|

\ / TC\ /NtH /M
Higgs fields Higgs fields condensed,
uncondensed Ajgapped
U(1) ACL, non-Fermi /2> ACL, random-matrix
liquid Green’s function Green’s function (has
(no quasiparticles) quasiparticles)
Low energy fermion Reduced Low energy

density of states ~7/Ex  fermion density of states

~const. —> “pseudogap”

Transition exponent: [H| ~ (r —r.)'/?, v=1/2.
Mean-field behavior at large-M,N.



—uture directions

SYK-like large-N limit for fermions coupled to quantum critical order parameter? Obtain
qguantum critical strange metal “fan” in the cuprates phase diagram.

2+1 dimensional lattice-SYK like model of chargons coupled to gauge fields, with
Higgs transition from a strange metal with a “large” Fermi surface to a pseudogap with
a “small” Fermi surface.

Model that can give linear-in-T resistivity at both high and low 7, keeping a fixed slope
corresponding to a single-particle scattering rate of A/(kgT') on both sides of the MIR

limit.

Model anomalous features in the optical conductivity of strange metals using
crossovers between different SYK-based non-Fermi liquids.

Try to understand if SYK-like local criticality can emerge in rare regions in disordered
Hubbard models, and the effects of the local critical regions on the rest of the system.



