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Motivation

Non-equilibrium statistical mechanics from quantum
mechanics

timescales of thermalization:

-short (local) timescales (governed by local couplings)
-macroscopic timescales (grow polynomially with L)
-exponentially long scales (Heisenberg,. . .)

@ macroscopic timescales of thermalization from underlying
microscopic physics

o (A(t)A(0))
@ macroscopic timescales of thermalization from underlying
quantum mechanics

o (P[A@)|Y)



Thermalization: classical vs quantum mechanical

e assuming classical transport (diffusion)
o (UIAWD)|T) =3, CpeTot, T, = Dn?/L?

even classically the space of all possible A(t) = (V]|A(t)|¥)
is not very well understood. E.g. can time-averaged A can
be parametrically longer than the diffusion time I’fl,

/ At)dt > T7! ?
maxt>oA
e quantum mechanically

how to define the spectrum I',, and longest thermalization
timescale I‘l_l a priori is not clear
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This talk: outline

quantum-mechanical definition of I';!

uniform (for all ¥) bound on time dynamics of (V| A(¢)| )

T
+ dt<\If|A<t>\v>'” < 2(1/T)
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presence of quantum states that thermalize parametrically
longer than T'[*

presence of new macroscopic timescales besides I';!



New technical ingredient — deviation function

e connection between time evolution and linear algebra of A
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e deviation function, arXiv:1702.07722
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Uniform bound on averaged time evolution

o Heuristic argument: after time ¢ energies E;, F;,
|E; — E;|t > 1 are mutually de-phased

(WIA®)| W) =D CrCiAije FmBl 2N " (W | A1) Wy,)
¥ k

- here ¥y, = PV, P, — projector on an energy band of size
1/t centered at E + k/t

(R A@)[Wr)| < z(1/1)
finally, we have:

(WlA@)[)] < 2(1/1)

e Conjecture: uniform bound on time-averaged dynamics

‘/oo dtsm(i/T) (WAL W)| < 3(1/t)



Uniform bound on averaged time evolution

e numerical check for chaotic spin-chain

- AE(z) inverse function to maximal eigenvalue = = Apax
of a “narrow strip” matrix of width 1/7T"= AE

- AE(x) inverse function to deviation function z(AE)
(maximal eigenvalue of small “square” matrix)
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Uniform bound on averaged time evolution

e numerics confirms validity of the uniform bound for
chaotic and integrable models, arxiv:1806.04187

‘/ dtmim@m@)\\p) < 32(1/1)
e the bound holds for ¢ > t*
e there are states W which approximately saturate the bound

additional numerics shows:
- time t* is the macroscopic thermalization (diffusion) time

- macroscopic diffusive states approximately saturate the
bound



Time-dynamics of quasi-classical diffusive states

e states W with macroscopic spatial inhomogeneities
(U|A)|T) et/
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Non-perturbative definition of Thouless time

e macroscopic thermalization time I';! is associated with

the maximum of 22/AE(z) ~ T7!
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o for a quantum diffusive system Thouless (diffusion) time
is the longest thermalization time for all initial states W
with a macroscopic initial amplitude (W|A(0)|¥) ~ 1



Recap
e deviation function of an observable A, arXiv:1702.07722
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e non-perturbative definition of thermalization time,
arxiv:1806.04187
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Difference between classical and quantum
thermalization

o I';!is the longest thermalization time for all
configurations/states W with a macroscopic initial
amplitude (V|A(0)|¥) ~ 1

e at quantum level there are states W with size-suppressed
amplitudes that thermalize parametrically slower than
Thouless time I';* (in fact arbitrarily slowly)
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Outstanding questions

e is spectrum I',, a useful notation quantum-mechanically?
It
o (VIAQ@) W) = 32, Che
- exponential decay of (V| A(t)|¥) is not natural at

quantum level

- presence of “non-classical” states with non-intuitive
dynamics (e.g. arbitrary long thermalization time)

- relation to 2pt function (A(¢)A(0))

e evidence of new timescale(s) beyond I';*



Thermalization — conventional picture

Diffusive system thermalizes at the scale of Thouless
(diffusive) time 7 ~ L? necessary for the slowest diffusive
modes to propagate across the system. After time t ~ 7
the system is fully ergodic.

There are no other (longer) timescales, except those
exponential in system size — we debunk that.



ETH “reduces” to RMT?

For small w < AFEgy, f(w) is constant and 7, is GOE
(BL|A|E,,) = A6 + e 752 f(W)rum

D’Alessio, Kafri, Polkovnikov, Rigol’15

e Gaussian distribution of r,,, and 7,
Beugeling, Moessner, Haque’14,

e ratio (r2 ) =2(r? )
AD, Liu’l7, Mondaini, Rigol’l7

Expectation: ETH reduces to RMT at Thouless energy
|Cd| < ETh = ZD/L2



Buildup: Random Matrix Theory

o form-factor f*(w) =>_.r% 0(w — E; + Ej)

Ju

e assuming fluctuations 7;; are independent maximal
eigenvalue of band random matrix is bounded by

* N\ 0
2AFE \ *
*(AFE) <8 / do|f(w)]?,  Aap= Y 4
0 N
0 /\U*
2AFE

arXiv:1702.07722

o Gaussian Random Matrix, f? = const,
AFE(z) = 2%/(8f?), x oc AEY?



Upper bound on AFERy from transport

Idea: to go from energy domain to time domain
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o for AE < AFERy all elements of Axg are random
(uncorrelated) by assumption
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Upper bound on AFERy from transport

o form-factor f?(w) is a Fourier transform of two-point
function

[ a2 o apwi)
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this inequality holds for sufficiently small AE < AEgwm

o for a diffusive 1D system, (E|A(t)A(0)|E) ~ (tp/t)'/?,
and we take W to be a quasi-classical state describing
slowest diffusive mode (W (t)|A|U(t)) ~ e ¥/7, 7 =tpL?
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arxiv:1804.08626



Summary

o There is a new “Random Matrix" time-scale AEg,; which
is parametrically longer than the Thouless (diffusive) time

o Off-diagonal matrix elements A;; encode slow
hydrodynamic modes (transport) through
cross—correlations; a framework to connect ETH and
dynamics?

(W|A(t) ZC’@ "7

o Conjecture: time-scale AEp,; is the time when the
exponential decay of (V| A(t)| W) saturates into quantum
fluctuations (W|A(t)| W) ~ e=5/2



Conclusions

Thermalization of quantum systems is a very rich subject:
approach toward equilibrium

(W[A(t)|¥)
“knows" about transport and much more

We identified macroscopic timescale of thermalization starting
from the underlying quantum-mechanical formulation
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Beyond I'"! there is a new “Random Matrix" time-scale
AEEH%/I which is parametrically longer than T~1. It might be
related to the “end of exponential decay” timescale

Quantum dynamics is richer than classical: there are special
states W with arbitrarily long thermalization time. But there is
also a uniform bound on thermalization dynamics for all ¥



