Microscopic origin of macroscopic thermalization time

Anatoly Dymarsky

University of Kentucky

Bounding Transport and Chaos Nordita, August 22, 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Motivation

Non-equilibrium statistical mechanics from quantum mechanics

timescales of thermalization:

- -short (local) timescales (governed by local couplings)
- -macroscopic timescales (grow polynomially with L)
- -exponentially long scales (Heisenberg,...)
 - macroscopic timescales of thermalization from underlying microscopic physics

 $\diamond \ \langle A(t)A(0)\rangle$

 macroscopic timescales of thermalization from underlying quantum mechanics

(日) (日) (日) (日) (日) (日) (日) (日)

 $\diamond \ \langle \Psi | A(t) | \Psi \rangle$

Thermalization: classical vs quantum mechanical

• assuming classical transport (diffusion)

•
$$\langle \Psi | A(t) | \Psi \rangle = \sum_{n} C_{n} e^{-\Gamma_{n} t}, \quad \Gamma_{n} = Dn^{2}/L^{2}$$

even classically the space of all possible $A(t) \equiv \langle \Psi | A(t) | \Psi \rangle$ is not very well understood. E.g. can time-averaged A can be parametrically longer than the diffusion time Γ_1^{-1} ,

$$\frac{1}{\max_{t>0} A(t)} \int_0^\infty A(t) dt \gg \Gamma_1^{-1} \qquad ?$$

quantum mechanically

how to define the spectrum Γ_n and longest thermalization timescale Γ_1^{-1} a priori is not clear

This talk: outline

- quantum-mechanical definition of Γ_1^{-1}
- uniform (for all Ψ) bound on time dynamics of $\langle \Psi | A(t) | \Psi
 angle$

$$"\left|\frac{1}{T}\int_0^T dt \langle \Psi|A(t)|\Psi\rangle\right|" \leq x(1/T)$$

 \bullet presence of quantum states that thermalize parametrically longer than Γ_1^{-1}

(日) (日) (日) (日) (日) (日) (日) (日)

• presence of new macroscopic timescales besides Γ_1^{-1}

New technical ingredient – deviation function

• connection between time evolution and linear algebra of \hat{A}

$$\int_{-\infty}^{\infty} dt \frac{\sin(t/T)}{\pi t} \langle \Psi | A(t) | \Psi \rangle = \langle \Psi | \begin{bmatrix} * & & 0 \\ & * & \\ & & \ddots & \\ & & * & \\ 0 & \swarrow & * \end{bmatrix} | \Psi \rangle$$

• deviation function, arXiv:1702.07722

$$x(\Delta E) = \lambda_{\max} \begin{pmatrix} \begin{bmatrix} 0 & & & 0 \\ & & & \\ & & \underbrace{[\dots]}_{2\Delta E} \\ 0 & & & 0 \end{bmatrix} \end{pmatrix}$$

Uniform bound on averaged time evolution

• Heuristic argument: after time t energies $E_i, E_j, |E_i - E_j| t \ge 1$ are mutually de-phased

$$\langle \Psi | A(t) | \Psi \rangle = \sum_{ij} C_i^* C_j A_{ij} e^{-i(E_i - E_j)t} \approx \sum_k \langle \Psi_k | A(t) | \Psi_k \rangle$$

- \cdot here $\Psi_k = P_k \Psi, \, P_k$ projector on an energy band of size 1/t centered at E+k/t
- $$\label{eq:prod} \begin{split} \cdot \; |\langle \Psi_k | A(t) | \Psi_k \rangle| &\leq x(1/t) \\ \text{finally, we have:} \end{split}$$

$$|\langle \Psi | A(t) | \Psi \rangle| \le x(1/t)$$

• Conjecture: uniform bound on time-averaged dynamics

$$\left| \int_{-\infty}^{\infty} dt \frac{\sin(t/T)}{t} \langle \Psi | A(t) | \Psi \rangle \right| \le 3x(1/t)$$

Uniform bound on averaged time evolution

- numerical check for chaotic spin-chain
 - · $\Delta \tilde{E}(x)$ inverse function to maximal eigenvalue $x = \lambda_{\max}$ of a "narrow strip" matrix of width $1/T = \Delta E$

· $\Delta \hat{E}(x)$ inverse function to deviation function $x(\Delta E)$ (maximal eigenvalue of small "square" matrix)

Uniform bound on averaged time evolution

• numerics confirms validity of the uniform bound for chaotic and integrable models, arxiv:1806.04187

$$\int_{-\infty}^{\infty} dt \frac{\sin(t/T)}{t} \langle \Psi | A(t) | \Psi \rangle \bigg| \leq 3x (1/t)$$

 \bullet the bound holds for $t \geq t^*$

 ${\, \bullet \,}$ there are states Ψ which approximately saturate the bound

(日) (日) (日) (日) (日) (日) (日) (日)

additional numerics shows:

- time t^* is the macroscopic thermalization (diffusion) time
- macroscopic diffusive states approximately saturate the bound

Time-dynamics of quasi-classical diffusive states

- states Ψ with macroscopic spatial inhomogeneities $\langle\Psi|A(t)|\Psi\rangle\approx e^{-t/\tau}$

$$\langle a \rangle_T \equiv \int_{-\infty}^{\infty} dt \frac{\sin(t/T)}{t} \langle \Psi | A(t) | \Psi \rangle$$

$$\langle a \rangle_T = \begin{cases} \sim 1, & T \ll \tau \\ \tau/T, & T \gtrsim \tau \end{cases}$$

ж

Non-perturbative definition of Thouless time

• macroscopic thermalization time Γ_1^{-1} is associated with the maximum of $x^2/\Delta \hat{E}(x)\sim \Gamma_1^{-1}$

• for a quantum diffusive system Thouless (diffusion) time is the longest thermalization time for all initial states Ψ with a macroscopic initial amplitude $\langle \Psi | A(0) | \Psi \rangle \sim 1$

Recap

• deviation function of an observable A, arXiv:1702.07722

$$x(\Delta E) = \lambda_{\max} \left(\begin{bmatrix} 0 & & & 0 \\ & & \underbrace{[\dots]}_{2\Delta E} & \\ 0 & & & 0 \end{bmatrix} \right)$$

 non-perturbative definition of thermalization time, arxiv:1806.04187

$$\max_{x} \frac{x^2}{\Delta E(x)} \sim \Gamma_1^{-1}$$

• uniform bound on time-averaged dynamics

$$\left|\int_{-\infty}^{\infty} dt \frac{\sin(t/T)}{t} \langle \Psi | A(t) | \Psi \rangle \right| \le 3 x \left(\frac{1}{t}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

Difference between classical and quantum thermalization

- Γ_1^{-1} is the longest thermalization time for all configurations/states Ψ with a macroscopic initial amplitude $\langle \Psi | A(0) | \Psi \rangle \sim 1$
- at quantum level there are states Ψ with size-suppressed amplitudes that thermalize parametrically slower than Thouless time Γ_1^{-1} (in fact arbitrarily slowly)

Outstanding questions

• is spectrum Γ_n a useful notation quantum-mechanically?

$$\langle \Psi | A(t) | \Psi \rangle = \sum_{n} C_{n} e^{-\Gamma_{n} t}$$

- exponential decay of $\langle \Psi | A(t) | \Psi \rangle$ is not natural at quantum level

- presence of "non-classical" states with non-intuitive dynamics (e.g. arbitrary long thermalization time)

(日) (日) (日) (日) (日) (日) (日) (日)

- relation to 2pt function $\langle A(t)A(0)\rangle$

• evidence of new timescale(s) beyond Γ_1^{-1}

Thermalization – conventional picture

Diffusive system thermalizes at the scale of Thouless (diffusive) time $\tau \sim L^2$ necessary for the slowest diffusive modes to propagate across the system. After time $t \sim \tau$ the system is fully ergodic.

There are no other (longer) timescales, except those exponential in system size – we debunk that.

(日) (日) (日) (日) (日) (日) (日) (日)

ETH "reduces" to RMT?

For small $\omega \leq \Delta E_{RM}$, $f(\omega)$ is constant and r_{nm} is GOE

$$\langle E_n | A | E_m \rangle = A^{\text{eth}} \delta_{nm} + e^{-S/2} f(\omega) r_{nm}$$

D'Alessio, Kafri, Polkovnikov, Rigol'15

• Gaussian distribution of r_{nn} and r_{nm} Beugeling, Moessner, Haque'14, ...

• ratio
$$\langle r_{nn}^2 \rangle = 2 \langle r_{nm}^2 \rangle$$

AD, Liu'17, Mondaini, Rigol'17

Expectation: ETH reduces to RMT at Thouless energy $|\omega| \leq E_{\rm Th} \equiv D/L^2$.

うして ふゆう ふほう ふほう ふしつ

Buildup: Random Matrix Theory

• form-factor
$$f^2(\omega) = \sum_j r_{ij}^2 \delta(\omega - E_i + E_j)$$

• assuming fluctuations r_{ij} are *independent* maximal eigenvalue of band random matrix is bounded by

$$x^{2}(\Delta E) \leq 8 \int_{0}^{2\Delta E} d\omega |f(\omega)|^{2}, \qquad A_{\Delta E} = \begin{bmatrix} * \searrow & 0 \\ \searrow & * \\ & \ddots & \swarrow \\ 0 & \nearrow & \searrow \\ 0 & \swarrow & \ast \\ 2\Delta E \end{bmatrix}$$

arXiv:1702.07722

◦ Gaussian Random Matrix, $f^2 = \text{const}$, $\Delta E(x) = x^2/(8f^2)$, $x \propto \Delta E^{1/2}$

(日) (日) (日) (日) (日) (日) (日) (日)

Upper bound on $\Delta E_{\rm RM}$ from transport

Idea: to go from energy domain to time domain

$$\int dt \frac{\sin(t\Delta E)}{t\pi} \langle \Psi(t) | A | \Psi(t) \rangle = \langle \Psi(0) | A_{\Delta E} | \Psi(0) \rangle$$
$$f_{\text{new}}^2(\omega) = \begin{cases} f^2(\omega) : |\omega| \le 2\Delta E \\ 0 : |\omega| > 2\Delta E \end{cases} \quad A_{\Delta E} = \begin{bmatrix} * \searrow & 0 \\ \searrow & * \\ 0 & \swarrow & \swarrow \\ 0 & \swarrow & \swarrow \\ 0 & \swarrow & \swarrow \\ 2\Delta E \end{bmatrix}$$

• for $\Delta E < \Delta E_{\rm RM}$ all elements of $A_{\Delta E}$ are random (uncorrelated) by assumption

$$\max_{\Psi} |\langle \Psi(0) | A_{\Delta E} | \Psi(0) \rangle|^2 \le 8 \int_0^\infty d\omega \, f_{\text{new}}^2(\omega) = \int_0^{2\Delta E} d\omega \, f^2(\omega)$$

Upper bound on $\Delta E_{\rm RM}$ from transport

 \bullet form-factor $f^2(\omega)$ is a Fourier transform of two-point function

$$\max_{\Psi} \left| \int dt \frac{\sin(t\Delta E)}{t \ \pi} \langle \Psi(t) | A | \Psi(t) \rangle \right|^2 \le \int dt \frac{\sin(t\Delta E)}{t \ \pi} \langle E | A(t) A(0) | E \rangle_{\rm c}$$

this inequality holds for sufficiently small $\Delta E \leq \Delta E_{\rm RM}$

• for a diffusive 1D system, $\langle E|A(t)A(0)|E\rangle_c \sim (t_D/t)^{1/2}$, and we take Ψ to be a quasi-classical state describing slowest diffusive mode $\langle \Psi(t)|A|\Psi(t)\rangle \sim e^{-t/\tau}$, $\tau = t_D L^2$

$$(\Delta E \tau)^2 \le \Delta E \sqrt{t_D \tau} \quad \Rightarrow \quad \Delta E_{\rm RM} \le \frac{1}{t_D L^3}$$

(日) (日) (日) (日) (日) (日) (日) (日)

arxiv:1804.08626

Summary

- There is a new "Random Matrix" time-scale $\Delta E_{\rm RM}^{-1}$ which is parametrically longer than the Thouless (diffusive) time
- Off-diagonal matrix elements A_{ij} encode slow hydrodynamic modes (transport) through cross-correlations; a framework to connect ETH and dynamics?

$$\langle \Psi | A(t) | \Psi \rangle = \sum_{n} C_{n} e^{-\Gamma_{n} t}$$
 ?

• Conjecture: time-scale $\Delta E_{\rm RM}^{-1}$ is the time when the exponential decay of $\langle \Psi | A(t) | \Psi \rangle$ saturates into quantum fluctuations $\langle \Psi | A(t) | \Psi \rangle \sim e^{-S/2}$

Conclusions

• Thermalization of quantum systems is a very rich subject: approach toward equilibrium

 $\langle \Psi | A(t) | \Psi \rangle$

"knows" about transport and much more

• We identified macroscopic timescale of thermalization starting from the underlying quantum-mechanical formulation

$$\Gamma^{-1} = \max \frac{x^2}{\Delta E(x)}$$

- Beyond Γ^{-1} there is a new "Random Matrix" time-scale $\Delta E_{\rm RM}^{-1}$ which is parametrically longer than Γ^{-1} . It might be related to the "end of exponential decay" timescale
- Quantum dynamics is richer than classical: there are special states Ψ with arbitrarily long thermalization time. But there is also a uniform bound on thermalization dynamics for all Ψ