Holographic studies of ABJM theory at finite density

OSCAR HENRIKSSON

NORDITA WORKSHOP, OCTOBER 5 2017

Based on work mainly from... 1609.07186 with O. DeWolfe, S. Gubser, C. Rosen 1612.06823 with C. Rosen

Top-down vs. bottom-up holography

Gauge/gravity dualities can be derived from string theory

Top-down dualities are difficult to deal with → can postulate gravity theory, assume duality

Bottom-up is flexible – too flexible?

Top-down imposes tight constraints, allows for more precise statements

...especially regarding fermionic response

 $\mathscr{L} = -\frac{1}{2}eR(e,\omega) - \frac{1}{2}\varepsilon^{\mu\nu\rho\sigma}(\bar{\psi}^{i}_{\mu}\gamma_{\nu}D_{\rho}\psi_{\sigma i} - \bar{\psi}^{i}_{\mu}\bar{D}_{\rho}\gamma_{\nu}\psi_{\sigma i})$ $-\frac{1}{12}e(\bar{\chi}^{ijk}\gamma^{\mu}D_{\mu}\chi_{ijk}-\bar{\chi}^{ijk}\bar{D}_{\mu}\gamma^{\mu}\chi_{ijk})-\frac{1}{96}e\mathcal{A}_{\mu}^{ijkl}\mathcal{A}^{\mu}_{ijkl}$ $-\frac{1}{8}e[F_{\mu\nu II}^{+}(2S^{II,KL}-\delta^{II}_{KL})F^{+\mu\nu}_{KL}+h.c.]$ $-\frac{1}{2}e[F_{\mu\nu II}^{+}S^{IJ,KL}O^{+\mu\nu KL} + h.c.]$ $-\frac{1}{4}e[O_{\mu\nu}^{+}]^{IJ}(S_{\mu\nu}^{IJ,KL}+u_{IJ}^{ij}v_{ijKL})O^{+\mu\nu KL}+h.c.]$ $-\frac{1}{24}e\left[\bar{\chi}_{iik}\gamma^{\nu}\gamma^{\mu}\psi_{\nu l}(\hat{\mathcal{A}}_{\mu}^{ijkl}+\mathcal{A}_{\mu}^{ijkl})+\text{h.c.}\right]$ $-\frac{1}{2}e\bar{\psi}_{\mu}^{[i}\psi_{\nu}^{j]}\bar{\psi}_{i}^{\mu}\psi_{i}^{\nu}$ $+\frac{1}{4}\sqrt{2}e\left[\bar{\psi}_{\lambda}^{i}\sigma^{\mu\nu}\gamma^{\lambda}\chi_{iik}\bar{\psi}_{\mu}^{j}\psi_{\nu}^{k}+\text{h.c.}\right]$ $+e\left[\frac{1}{144}\eta\varepsilon_{ijklmnpq}\tilde{\chi}^{ijk}\sigma^{\mu\nu}\chi^{lmn}\tilde{\psi}^{p}_{\mu}\psi^{q}_{\nu}\right]$ $+\frac{1}{8}\bar{\psi}_{\lambda}^{i}\sigma^{\mu\nu}\gamma^{\lambda}\chi_{ikl}\bar{\psi}_{\mu i}\gamma_{\nu}\chi^{jkl}+\text{h.c.}]$ $+ \frac{1}{864} \sqrt{2} \eta e \left[\varepsilon^{ijklmnpq} \bar{\chi}_{ijk} \sigma^{\mu\nu} \chi_{lmn} \bar{\psi}'_{\mu} \gamma_{\nu} \chi_{pqr} + \text{h.c.} \right]$ $+\frac{1}{32}e\bar{\chi}^{ikl}\gamma^{\mu}\chi_{ikl}\bar{\chi}^{jmn}\gamma_{\mu}\chi_{imn}-\frac{1}{96}e(\bar{\chi}^{ijk}\gamma^{\mu}\chi_{iik})^{2}.$

Outline

1) ABJM theory and 4D SUGRA

Top-down fermionic linear response

- 2) ... in superconducting phases
- 3) ... compared to bosonic response
- 4) Summary & outlook

4D $\mathcal{N} = 8$ gauged supergravity

Large field content:

SUGRA mode	$g_{\mu u}$	ψ^i_μ	A^{IJ}_{μ}	χ_{ijk}	Re ϕ_{ijkl}	Im ϕ_{ijkl}	
Dual operator	$T^{\mu u}$	$\mathcal{S}^{\mu i}$	$J_R^{\mu IJ}$	${\rm Tr} \ X\lambda$	${ m Tr} X^2$	Tr λ^2	
Conformal dimension	3	5/2	2	3/2	1	2	1 3
SO(8) rep	1	8_{s}	28	${f 56}_{ m s}$	${f 35}_{ m v}$	35_{c}	

SO(8) gauge symmetry

70 scalars parametrize coset space $E_7/SU(8)$

84 126 126 84

ABJM theory

A 3D superconformal Chern-Simons-matter QFT

Two vector multiplets with gauge group $U(N) \times U(N)$

Global SO(8) symmetry

Matter supermultiplets in bifundamental representation

Gauge invariant operators (schematic): $\succ Tr X^2$ and $Tr X \Lambda$ and $Tr \Lambda^2$

Has classical gravity dual when $N \gg 1$

ABJM at finite density

Turn on chemical potential for one or more $U(1) \subset SO(8)$

Expectations for finite density?

- \rightarrow Fermi surfaces
- → Symmetry breaking (superconductivity)
- \rightarrow Exciting new phases?

Will compute fermionic & bosonic two-point functions, leading to spectral weights, Fermi surfaces, susceptibilities...

Conventional superconductors

Superconductivity \Leftrightarrow Spontaneous breaking of U(1) symmetry

BCS: Electron-phonon interactions \rightarrow Cooper pairing

 \rightarrow gapped fermion spectrum

a Higgs mechanism!

Dealing with maximal supergravity

SUGRA has many fields, complicated!

To isolate a more manageable sector of full SUGRA, perform **consistent truncation**

This can be done using group theory:

- \rightarrow pick subgroup $H \subset SO(8)$
- \rightarrow keep only fields invariant under that subgroup

 \rightarrow guaranteed to be consistent

(Decouple spin-1/2 from spin-3/2 using related group theory)

Supergravity truncations

We use two such subgroups of SO(8):

 $\Rightarrow SO(3) \times SO(3) \text{ and } SU(4) \implies 2e^{-1}\mathcal{L} = R - \mathcal{F}^2 - \frac{3}{2} \frac{|\mathcal{D}\xi|^2}{(1 - \frac{3}{4}\xi^2)^2} - \frac{24}{(1 - \frac{3}{4}\xi^2)^2}(-1 + \xi^2)$ $e^{-1}\mathcal{L} = \frac{1}{2}R - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \partial_{\mu}\lambda\partial^{\mu}\lambda - \frac{\sinh^2(2\lambda)}{4}(\partial_{\mu}\alpha - gA_{\mu})(\partial^{\mu}\alpha - gA^{\mu}) - \mathcal{P}$ $\mathcal{P} = \frac{g^2}{2}(s^4 - 8s^2 - 12) \quad \text{with} \quad s \equiv \sinh \lambda$ In both cases, left with metric, one U(1) gauge field, and one complex charged scalar IA

→ Three different T=0 symmetry breaking **domain walls**

Results: Exclusively GAPPED fermion spectra

... in three different top-down domain walls

Operator mixing \rightarrow level repulsion

$$\begin{pmatrix} i\Gamma^{\mu}\nabla_{\mu} \mathbf{1} + \mathbf{S} \end{pmatrix} \vec{\chi} = 0 \qquad \begin{pmatrix} -\frac{1}{4}\mathcal{A}(\cosh 2\lambda + 3) & 0 & \Gamma_{5}\sinh\lambda & -\sinh\lambda \\ 0 & \frac{1}{4}\mathcal{A}(\cosh 2\lambda + 3) & -\sinh\lambda & -\Gamma_{5}\sinh\lambda \\ -\Gamma_{5}\sinh\lambda & -\Gamma_{5}\sinh\lambda & -\Gamma_{5}\sinh\lambda \\ -\Gamma_{5}\sinh\lambda & -\sinh\lambda & \frac{i}{2\sqrt{2}}\mathcal{F} & \frac{1}{2}\left(\mathcal{A} - \sqrt{2}\right)\Gamma_{5}\sinh^{2}\lambda \\ -\sinh\lambda & \Gamma_{5}\sinh\lambda & \frac{1}{2}\left(\mathcal{A} + \sqrt{2}\right)\Gamma_{5}\sinh^{2}\lambda & -\frac{i}{2\sqrt{2}}\mathcal{F} \end{pmatrix}$$

Mixing looks \approx generalized BCS Faulkner et al. 0911.3402

Results so far...

Studying ABJM theory with holography, we found...

"normal" phase Fermi surfaces with non-FL fermions

...which upon symmetry breaking become...

gapped through a "holographic BCS mechanism"

Important question: Does the fermion response give information about $O(N^2)$ physics, or does it only involve a subleading sector?

Correlated Correlators

⇒ **Related question:** Do Fermi surfaces leave footprints in bosonic observables?

At weak coupling: **YES!** $2k_F$ singularities \rightarrow *Friedel oscillations*

Correlated Correlators

⇒ **Related question:** Do Fermi surfaces leave footprints in bosonic observables?

At strong coupling: **???** – Holographic states: No...?

→ in AdS-RN, singularities at complex momenta (Blake, Donos, Tong 1412.2003)

 \rightarrow no "conventional" FS signature

A special top-down geometry

IR is an "η-geometry"

Stable interval in fermion spectral weights

Need to solve linearized Maxwell equations for A_0

 \rightarrow couples to metric and scalar

Matching to $\frac{\partial \rho}{\partial \mu}$ at k = 0 requires finite, SUSYpreserving counterterms!

Again, singularities at complex momenta

→ different from weak coupling – no *clear* mark of Fermi surfaces

In both AdS-RN and here, we find

 $Re(k^*) \approx 1k_F$

 \rightarrow conspiracy or coincidence?

IR conformal to $AdS_2 \times R^2 \Rightarrow$ zero-temperature controlled by set of IR scaling exponents (Anantua et al. 1210.1590)

Takeaways

Studied ABJM/ $\mathcal{N}=8$ SUGRA duality

Top-down imposes strong constraints...

- → Fermi surfaces with **non-Fermi liquid** behavior
- \rightarrow upon symmetry breaking \Rightarrow gapped fermions (\approx "holographic BCS")
- → quantitative comparisons between fermionic and bosonic response meaningful ⇒ fermions results relevant at leading order in N?

Future directions:

- Compare fermionic/bosonic response in more general backgrounds
- Study how spectra in SUSY states changes upon adding finite density

Thank you!