# Thermalisation of pure states

#### (à la recherche de l'information perdue)

Julian Sonner



Many Body Quantum Chaos, Bad Metals & Holography 5 October 2017

#### work with



#### Tarek Anous (UBC)



Manuel Vielma (Geneva)



Thomas Hartman (Cornell)



Antonin Rovai (Geneva)





Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

### **Universality of NESS**

What I don't have time to talk about today, but wish I had



Universal features of spatial structure of NESS are determined cleanly by

 $\eta/s$ 

Can(?) measure e.g. in thermoelectric probes of graphene [Benjamin Withers & Julian Sonner, PRL 2017]

#### back to the topic of my talk

#### Setting the stage

AdS/CFT relates gravity (often in AdS) to unitary field theory (often CFT) *Familiar notions of quantum field theory are geometrized* 

Want to explore CFT  $\rightarrow$  (quantum) gravity recent revival of interest in low-D toy models (AdS<sub>3</sub>/CFT<sub>2</sub>, SYK,...)

→ relevant developments in CFT, many-body physics:

- time evolution and spread of entanglement
- thermalization of closed quantum systems (e.g. via eigenstates)
- non-perturbative methods (e.g. bootstrap)

Thermalization  $\rightarrow$  BH formation (& evaporation)

### Unitarity at stake

[Hawking, Maldacena]

- gravity as an EFT implies pure to mixed evolution
- fundamentally incompatible with a unitary S-matrix

Use simplified laboratory of  $AdS_3/CFT_2$ 

- 1. Signatures of information loss in CFT correlations @ large c
- 2. New results on bulk-boundary relation in semiclassical limit



### Approach

Tension with unitarity is sharpest for collapsing black hole

→ how do we describe black-hole collapse in CFT?



 $\langle \mathcal{V} | \mathcal{Q}_1(t,0) \mathcal{Q}_2(0) | \mathcal{V} \rangle$ 

 $|\mathcal{V}
angle$  heavy pure state ightarrow BH collapse

measure correlations of light probe operators  ${\cal Q}$ 

### **Results**

Follow CFT from quench to thermalisation at large c [also: Calabrese, Cardy; Hartman, Maldacena]

Calculate Lorentzian physics via continuum monodromy method: entanglement, autocorrelation,...



Results at large c: match gravity calculations in Vaidya

Autocorrelation: signs of information loss and retrieval

General correlation function: from conformal blocks to path integral

information loss in CFT

#### **BH collapse in CFT**



#### Vacuum dominance

in the semi-classical limit (large c), get sum of exponentials

$$\langle \mathcal{V} | \mathcal{Q}_1(x_1) \mathcal{Q}_1(x_2) | \mathcal{V} \rangle = \sum_{\text{blocks}} a_k e^{-\frac{c}{6} f_k^{(n)}(x_1, x_2)}$$

correlator approximated by largest term, the identity block

#### "it from id"

the dominant contribution comes from the identity Virasoro block, that is the unit operator **id** and all its descendants *T*, ∂*T*, *T*<sup>2</sup> *T*∂*T*..., (multi-graviton exchange in bulk)

subleading corrections exponentially suppressed in e<sup>-c</sup> ~ e<sup>-1/G</sup>

#### **Autocorrelation**

let us now return to the black hole and compute

 $G(t_1, t_2) = \langle \mathcal{V} | \mathcal{Q}_1(t_1, 0) \mathcal{Q}_2(t_2, 0) | \mathcal{V} \rangle$ 

Dominated by a **single** id channel

$$\mathcal{F}_0^{\Gamma(0)} = \exp\left[-\frac{c}{6}f_0^{\infty}(t_1, t_2)\right]$$

Determine semiclassical block from monodromy problem [Zamolochikov]



$$G(t_1, t_2) = \left(\frac{1}{\pi T} \cos\left(\frac{t_1}{2}\right) \sinh\left(\pi T t_2\right) - 2\sin\left(\frac{t_1}{2}\right) \cosh\left(\pi T t_2\right)\right)^{-2\Delta^{\mathcal{Q}}}$$

#### Late Lorentzian times

Let us return to the original question of information loss

The correlation function decays without bound at large time

$$G(t_1, t_2) \sim \exp(-\frac{2\pi\Delta^{\mathcal{Q}}t}{\beta})$$

Manifestly in conflict with unitarity: **CFT loses information!** 

But leading result comes with non-perturbative corrections

$$G(t_1, t_2) = a_0 e^{-\frac{c}{6}f_0^{\infty}} + \sum_{k \neq \text{vac}} a_k e^{-\frac{c}{6}f_k^{\infty}}$$
  
Vaidya geometry Other states

#### On information loss

This is the anti-information paradox: what happened to unitarity?

$$\overline{|G(t)|} = \left| \sum_{n,k} e^{i(E_n - E_k)t} \Psi_n^*(\mathcal{V}) \langle n | \mathcal{Q} | k \rangle \langle k | \mathcal{Q} | \mathcal{V} \rangle \right| \neq 0$$

→ (average) correlations cannot become arbitrarily small (see also [Barbon & Rabonivici])

Neglected non-perturbative corrections. They contribute

$$\sum_{k \neq \text{vac}} a_k e^{-\frac{c}{6} f_k^{\infty}(1,2,\dots,p)} \sim e^{-S}$$

restore unitary at large time  $\rightarrow$  non-perturbative effects in 1/G<sub>N</sub>

### Comments

Boundary story is that of thermalization. Non-unitary truncation, corresponds to leading bulk answer

Can investigate similar questions for heavy eigenstates

$$\langle \mathcal{O}_H \mathcal{O}_L \mathcal{O}_L \mathcal{O}_H \rangle \sim \langle \mathcal{O}_L \mathcal{O}_L \rangle_{T_H}$$

Closely related to study of ETH in CFT [Dymarsky et al.; Datta et al., JS & Vielma]

[Kaplan et al.] looked at contributions from higher blocks: non-exponential late time behaviour t<sup>-3/2</sup>

Not good enough: need to sum over all heavy blocks Similar story for spectral form factor [Dyer & Gur-Ari]

#### from conformal blocks to path integrals

#### **General correlation function**

suppose we would like to compute

$$G(t_1, x_1|t_2, x_2) = \langle \mathcal{V} | \mathcal{Q}_1(t_1, x_1) \mathcal{Q}_2(t_2, x_2) | \mathcal{V} \rangle$$

no longer dominated by a **single** id channel. Prescription:

$$G(t_1, x_1 | t_2, x_2) = \int dx_c \left| \mathcal{F}_0^{\Gamma(x_c)} \right|^2$$

Sum over **id** in all channels (looks odd from CFT perspective)

(remark: **id** in one channel = sum over heavies in another)

#### **Complex saddle points**

consider probe with  $1 \ll h_{\mathcal{Q}} \ll c$ 

evaluate correlator via saddle-point

$$G(t_1, x_1 | t_2, x_2) = \int dx_c \mathcal{F}_0^{\Gamma} \overline{\mathcal{F}_0^{\Gamma}}$$
  
  $\in \mathbb{C}$  (continuation to Lorentzian)

we find complex saddle points:  $x_c \in \mathbb{C}$ 

radical change of philosophy of Virasoro id block:

bulk physics is not well approximated by id in any single channel

#### **Bulk perspective**

$$G(t_1, x_1 | t_2, x_2) = \int \left[ Dx(\tau) \right] e^{im \int d\tau}$$

$$1 \ll h_{\mathcal{Q}} \ll c$$



$$G(t_1, x_1 | t_2, x_2) = \int dx_c e^{i\Delta \mathcal{L}(x_1^{\mu}, x_c) + i\Delta \mathcal{L}(x_c, x_2^{\mu})}$$

Gravity saddle point = CFT saddle point

for same kinematics, get complex saddle point (analytically continued geodesic)

#### Comments



Aren't we overcounting?

Usually sum over blocks, not channels

Working assumption: no overlap between **id** in different channels, when dualized in to a single channel (at large c)

Creates subtlety when looking at 1/c corrections

### Summary

time-dependent 3D quantum gravity with matter in 1/c expansion 'it from id'  $\rightarrow$  ideal arena to think about quantum BHs

CFT correlation functions seemingly violate unitarity (naïve). non-perturbative corrections in c restore unitarity

on gravity side these correspond to non-perturbative effects in  $G_{N}$ . geometric interpretation? bulk interpretation?

monodromy method identifies off-shell contributions on both sides:

General map from conformal block expansion to bulk path int?

The geometry of eigenstates

### Philosophy

Take a step back: why do closed quantum systems thermalise?

As alluded to before, eigenstate thermalisation gives an answer

$$\langle m|\mathcal{O}|n\rangle = \overline{\mathcal{O}}_{\mathrm{mc}}(\overline{E})\delta_{mn} + e^{-S(\overline{E})/2}f(\overline{E},\omega)R_{mn}$$

Thermalisation = dephasing the levels of a chaotic quantum system

Individual eigenstates are thermal.

Is there a bulk dual of an individual eigenstate?

Typically, many-body spectrum out of reach, but not in SYK! [JS, Vielma; Maldacena & Kourkoulou, Maldacena & Stanford, Polchinski & Rosenhaus]

## The model

random (quenched) disorder model with all-to-all couplings



$$H = \frac{1}{(2N)^{3/2}} \sum_{i,j,k,l=1}^{N} J_{ij;kl} c_i^{\dagger} c_j^{\dagger} c_k c_l$$
$$\left\{c_i^{\dagger}, c_j\right\} = \delta_{ij} \qquad \{c_i, c_j\} = 0$$

Couplings  $J_{ij;kl}$  are drawn from a Gaussian random distribution with  $\overline{J_{ij;kl}} = 0$  and  $\overline{|J_{ij;kl}|^2} = J^2$ 

## Comments

I) Origin: construct a controlled spin glass phase [Sachdev & Ye, Parcollet & Georges]

 II) Model revived independently by Kitaev: random Majorana fermions, connection to AdS<sub>2</sub> BH

- III) Model can be solved in a 1/N expansion: almost conformal at low temperature, finite residual entropy, maximally chaotic [Sachdev & Ye, Parcollet & Georges, Kitaev,...]
- IV) Model can be solved in ED for N ~ 20. Spectral properties, dynamics, eigenstate thermalisation [JS, Vielma]

### **Eigenstates**

[JS & Vielma]

Solve SYK in exact diagonalization

We find (numerically) that indeed ETH is the mechanism in SYK

$$\langle m|\mathcal{O}|n\rangle = \overline{\mathcal{O}}_{\mathrm{mc}}(\overline{E})\delta_{mn} + e^{-S(\overline{E})/2}f(\overline{E},\omega)R_{mn}$$

$$\mathcal{O} = \hat{n}_k \quad (\text{for some site} \quad k)$$



### Aside: just random?

Let's look at the off-diagonal matrix elements

$$\langle m|\mathcal{O}|n\rangle = \overline{\mathcal{O}}_{\mathrm{mc}}(\overline{E})\delta_{mn} + e^{-S(\overline{E})/2}f(\overline{E},\omega)R_{mn}$$



## Scrambling in eigenstates

[JS & Vielma]

Consider an out-of-time-order 4-pt function (OTOC)

$$\langle A(\tau)B(0)A(\tau)B(0)\rangle \sim e^{-2\lambda_L t}$$
  $\lambda_L = \frac{2\pi}{\beta}$ 

= upper bound on Lyapunov exponent [Maldacena, Shenker, Stanford,...]

Matches precisely with result for a black hole. Slight reformulation:

$$|\Psi\rangle = \frac{1}{\sqrt{Z}} \sum e^{-\beta E_n/2} |n\rangle_L \otimes |n\rangle_R$$

State is highly correlated:  $\langle \Psi | V_L V_R | \Psi \rangle \sim \mathcal{O}(1)$ 

State is non-typical:  $\langle \Psi' | V_L V_R | \Psi' \rangle \rightarrow 0$ 

Can trace reason for this to behaviour of OTOC above

## **Black holes and chaos**

[Shenker & Stanford; ... del Campo, Molina-Vilaplana, JS] 'eternal' black hole has two sides ( = 'Kruskal extension')

 $|\Psi_{\rm BH}
angle = |\psi(\beta)
angle$ 

two sides correspond to two sides of thermofield double



 $\langle \Psi | V_L V_R | \Psi \rangle \sim \mathcal{O}(1) \quad |\Psi \rangle \rightarrow |\Psi' \rangle \sim W(t) |\Psi \rangle \quad \langle \Psi' | V_L V_R | \Psi' \rangle \rightarrow 0$ 

## **Eigenstates and chaos**

[JS & Vielma]

Compare OTOC (and 2pt function) in eigenstates to thermal result



Become essentially indistinguishable as system size increases

Conjecture:  $\exists \lambda_{L}^{ETH} = \frac{2\pi}{\beta(E)}$ 

summary and outlook

### Summary

Eigenstates in the SYK model are thermal in the sense of ETH

Correlations in individual eigenstates are exponentially close to thermal ones

 $\rightarrow$  we may operationally treat a single eigenstate as having a dual geometry, up to exponential corrections

We've already seen that these corrections are important to resolve information loss

Comment: [Marolf & Polchinski] used ETH to argue against ER-EPR

### **Outlook (laundry list)**

I) Establish ETH analytically [Nayak, JS & Vielma]

$$\langle m | \mathcal{O}_i | n \rangle = \lim_{m,n \to \infty} \langle \mathcal{O}_m \mathcal{O}_i \mathcal{O}_n \rangle \qquad \qquad \mathcal{O}_k \sim c_i^{\dagger} \partial^k c_i$$

→ Limit of 6-pt function [Gross & Rosenhaus]

II) Prove conjecture about chaos exponent in eigenstates

III) Attack more generally the problem of bulk reconstruction Caveat:

- what is the bulk dual of SYK?
- how do we think about random couplings?
- perhaps tensor models are better starting point

### Thank you for your attention

#### **Unitarity vs thermalization**

(constraints on long-time correlations from unitarity)

Correlations in a closed quantum system, e.g.

$$G(t) = \mathrm{tr}\rho\mathcal{O}(t)\mathcal{O}(0)$$

Time average over a large time T cannot vanish by unitarity

$$\lim_{T \to \infty} \overline{|G(t)|^2} \neq 0$$

Need to assume spectrum is generic (no specific ordering principle)

➤ connection with ETH

#### **Unitarity vs thermalization**

(constraints on long-time correlations from unitarity)

$$\rho = e^{-\beta H}$$



see also [Barbon & Rabonivici]