GENERALISED GLOBAL SYMMETRY AND HOLOGRAPHY OF DYNAMICAL EXTENDED OBJECTS

NICK POOVUTTIKUL

|Lorentz Institute for theoretical physics, Leiden University, The Netherlands > +|University of Iceland, Reykjavik, Iceland>

For MANY-BODY QUANTUM CHAOS, BAD METALS AND HOLOGRAPHY based on

- Grozdanov & NP, Generalised Global symmetry and magnetohydrodynamic waves in a strongly interacting holographic plasma, [1707.04182]
- Grozdanov & NP, Effective theory of dissipative domain walls, propagating shear mode and holography [to appear]

For background story

- Grozdanov, Hofman & Iqbal, GGS and dissipative MHD, [1610.07392]
- Hofman & Iqbal, GGS and holography [1707.08577]

MAGNETOHYDRODYNAMICS AS A THEORY OF DISSIPATIVE STRINGS

***** Conservation of strings associated to the genuine global symmetry

Normal global U(1) $\partial_{\mu} j^{\mu} = 0$

Generalised global U(1) $\partial_{\mu}J^{\mu\nu} = 0$

Gaiotto, Kapustin, Seiberg & Willet '14

- GS can be: gauged, anomalous, spontaneously broken, gradient expanded, Simple to construct holographic dual Grozdanov & NP '17; Hofman & Iqbal '17
- * Hydrodynamics limit of plasma! + Consistently classify transport coef.
 Landau pole & Running of electromagnetic coupling

HYDRODYNAMICS FOR CONSERVED WALLS

* Conserved charge for extended objects

$$T^{\mu\nu} = (\varepsilon + p)u^{\mu}u^{\nu} + pg^{\mu\nu} - \mu\rho h^{\mu}h^{\nu}$$
$$J^{\mu\nu} = \rho(u^{\mu}h^{\nu} - h^{\mu}u^{\nu})$$

- * Same system of equations as in hydro + translational symmetry Goldstone $\partial_{\mu}T^{\mu\nu}(v,\partial_{\mu}\phi) = 0, \quad \partial_{t}\phi \sim v$ Martin, Parodi & Pershan '72 $\partial_{\mu}J^{\mu\nu} = 0 \quad \Leftrightarrow \quad \partial_{t}(\partial\phi) \sim \partial \cdot v$ Delacretaz, Gouteraux, Hartnoll & Karlsson '17
- ***** Same excitations but perhaps more systematic way to classify transport

Andrade, Baggioli, Krikun &NP '17

HOLOGRAPHY FOR CONSERVED WALLS

* Conserved charge for extended objects

$$S_{\text{bulk}} = \int d^4 X \sqrt{-G} \left(R + 2\Lambda - \frac{1}{3} H_{abc} H^{abc} \right)$$

Analytic solution for two domain walls

* Holographic renormalisation demand mixed boundary condition

$$S_{\text{and}} = \int_{u=1/\Lambda} d^4 x \sqrt{-\gamma} \left(\frac{1}{\kappa(\Lambda)} J_{\mu\nu} J^{\mu\nu} \right)$$

Bardoux, Caldarelli & Charmousis '12 Andrade & Withers '13

 Found "lattice" diffusion mode at and propagating modes in the shear channel
 See also Esposito, Nicolis & Penco '17

* Effective action: $S_{\text{eff}} \sim S_{\text{matter}} + c_r (\partial \phi)^2$, upon taking $\star_{3d} H = d\phi$

SUMMARY

- * All these results only demand the conservation of extended objects!
- * "Josephson relation" = Conservation of walls ?
- $\boldsymbol{\ast}$ Simple and straightforward holography for propagating shear mode
- * Gauged, anomalous, spontaneously broken symmetry
 - Goldstone of generalised global symmetry (Photon? Phonon? Graviton?) Hofman & Iqbal '17
- ***** Relation to massive gravity?

Blake, Vegh & Tong '13; Alberte, Baggioli, Kmnelitsky Pujolas '15; SEE ALSO MATTEO TALK
* Application in plasma and other area?

Delacretaz, Gouteraux, Hartnell & Karlsson '16 -'17

THANK YOU FOR YOUR ATTENTION