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Under this choice, the temperature and energy density on r = r
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Then from the Smarr relation we obtain the � in the pressure (33),
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And form the constraint equation (28) we obtain
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which will be used in the calculation of momentum relaxation rate.
Linearised Hydrodynamics — Consider the linearised velocity and the temperature
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Redefine the velocity such that it is proportional to the stress tensor hT t
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Then the Ward identity (40) becomes
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The coe�cient of correction to the right hand side is
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Ward identity, momentum relaxation rate and heat conductivity of Rindler fluid.
In order to conform our results, as well as building the relation between Rindler fluid and

the dual boundary fluid in AdS, we also study the momentum relaxation from fluid/gravity
duality on the Dirichlet cuto↵ surface in AdS. Notice that the forced fluid dynamics dual to
AdS gravity with massless scalar fields has already been studied on the cuto↵ surface in [28],
as well as the generalization in arbitrarily dimensions [19], which is helpful for us to compare
the results. For convenience, we will use the name “cuto↵ AdS fluid” to substitute the “fluid
dual to AdS spacetime on a finite cuto↵ surface”. Since the calculation of fluid/gravity duality
on cuto↵ surface is more complicated than that on the boundary, we have closed the Maxwell
field in the paper, which does not a↵ect our main purposes to extract the Ward identity and
momentum relaxation rate.

In all the calculation, we will imposed the Dirichlet boundary condition at the cuto↵
surface, and require the regular boundary condition at the horizon of the black brane. In the
following section 2, we firstly study the Rindler fluid with the weak momentum relaxation
in perturbation. In this section 3, we study the cuto↵ AdS fluid with momentum relaxation,
and analyze both of its the near horizon limit and near boundary limit, which build the flow
from RIndelr fluid to AdS fluid on the boundary. In section 4, we make the conclusion and
discussion of further topics.

2 Momentum Relaxation in Rindler Fluid

We start with the Einstein Hilbert action in p+2 dimensional flat spacetime, with p massless
scalar fields �
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We use µ, ⌫ = 0, 1, ..., p+1 to indicate the indexes of bulk spacetime. Varying the action with
respect to the metric g
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If we consider k as a small parameter, the following p+2 dimensional Rindler metric with
corrections of order k2, is an perturbed solution of the field equations (2) up to k2,
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Here 0 is a constant to indicate the surface gravity in the accelerating frame. We have choose
the condition that the horizon is located at r = r0 even with the metric corrections of k2.
And on the timelike hypersurface ⌃

c

with r = r
c

, the induced metric is intrinsic flat.
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“hydrodynamic of transports with momentum relaxation” Hartnoll, Kovtun, Muller, Sachdev[07’]
“Momentum relaxation from the fluid/gravity correspondence”Blake[15’]
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The dimensionless number (`0)T0/s0 = �1 is in (43).
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3 Momentum Relaxation in Cuto↵ AdS Fluid

In order to relate our previous results with the momentum relaxation from fluid/gravity
correspondence in AdS black brane [63], in this section we start with the action of pure AdS
gravity in (p + 2) dimensions with cosmological constant ⇤ = �p(p + 1)/2L2, with L the
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There is an exact solution of the metric and scalar fields (see e.g. [60]),
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To study the hydrodynamics with momentum relaxation, we will use the set up in [63] and
consider the k as a small perturbations, as well as identify @

a

⇠ k2. Thus, in the following,
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The coe�cient correction on the right-hand side is
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The dimensionless number, `0T0/s0 = �1, was defined in (2.43). And from the definition of
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In next section, we will conform these results from the near horizon limit of the cuto↵ AdS
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3 Momentum Relaxation in Cuto↵ AdS Fluid
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3.3 Running of the Cuto↵ surface as Wilson RG flow

In the fluid/gravity correspondence with a cuto↵ surface, [22–25], the running of the cuto↵
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̃
!

=
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1� !⌧
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4⇡s̃c T̃c

k2
, ⌧�1

c

=
k2

4⇡T̃c



1� `cTc

sc

k2

T 2
c

�

+O(k6). (3.52)

In the DC limit ! ! 0, this expression reduces to the formulae in terms of the local s̃c and

T̃c given in (3.37) and (3.38),

̃DC ⌘ lim
!!0

̃
!

=
4⇡s̃c T̃c

k2
. (3.53)

For simplification, we can rewrite `c in (3.50) as the dimensionless form

⇠
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p

(rc)�
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0
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✓
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◆

. (3.54)

3.3 Running of the Cuto↵ surface as Wilson RG flow

In the fluid/gravity correspondence with a cuto↵ surface, [22–25], the running of the cuto↵

surface is interprected as the wilson renormalison group in holography. A recent field theory

discussion can be found in [71]

Two figures will be added here, based on (3.54)

The breaking of translational invariance modifies the conservation equations of relativistic

hydrodynamics into @
a

T a

b

= @
b

�IhOIi, where the Ward identity for the stress tensor controls

how momentum relaxes to equilibrium through scattering of the scalars. Notice that beyond

the leading order that was studied in [52] with @
a

T a

i

= �⌧�1
c

T a

i

, the new holographic Ward

identity up to order k4 suggested in [63] is

@
t

T t
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+ @
i

P = �⌧̄�1
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Q
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=
k2

4⇡T̃c

, (3.55)

with the acceleration a
i

= @
t

v
i

. It is in (2.42) for our Rindler fluid, and in (3.46) for our

cuto↵ AdS fluid. For the cuto↵ AdS fluid, the heat conductivity and momentum relaxation

rate up to order k4 are

̃
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, (3.56)
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then up to order O(k4) the Ward identity for momentum non-conservation equation becomes
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+ · · · , ⌧̄�1
⇤ =

k2s
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4⇡(E
k

+ P
k

)
. (93)

Assuming @
t

v
i

= � !v
i

and consider @
i

P
k

= s
k

@
i

T
k

, we have

v
i
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s
k

4⇡
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�E
k

+ P
k
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@
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T
k

+ · · · . (94)

From which we obtain the solution of v
i

v
i

= � 1

1� !⌧⇤

4⇡

k2
@
i

T
k

+ · · · , (95)

as well as the momentum relaxation rate
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s
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Here the coe�cient `⇤ is given by

`⇤ = �⇤
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Thus from the definition of the the heat current, we can read out the heat current

hQ
i

i ⌘ hT t

i

i = (E
k

+ P
k

)v
i

= �̄
!

@
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T
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, (98)

which lead to the heat conductivity with momentum relaxitation
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. (100)

In the DC limit ! ! 0, this expression reduce to the formulae in terms of the horizon data,
with s

k

and T
k

be given in (84) and (85). We can re write the (`⇤ ) in (97) as the dimensionless
number
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Near horizon limit. — In order to take the near horizon limit r ! r0, and match

with the gauge choose in the Rindler fluid, we can choose the gauge g
(1)
uu

(r0) = 0 and fix �⇣
�

through

g(1)
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(r0) = 0 ) �⇣
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We need to make the coordinate transformation

xa ! r
c

L
xa,

r
c

L
�⇤ ! r0

L

p

f 0(r0)(rc � r0) = �0. (103)
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We need to define the new energy density and pressure through

Ẽ ⌘ E + ⇣ 0
�

(pk2), P̃ ⌘ P + ⇣
�

(pk2) + �P, (3.39)

such that the Smarr relation is satisfied,
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Interestingly, �⇣
c

does not appear in �P and

D?
a

(�P) =
rp�1
0

Lp�2

k2

�c



(D?
a

ln r0)�
D?

a

ln�c

p� 1

✓

1� rp�1
c

rp�1
0

◆�

= (�`c)k
2a

a

, (3.41)

where after using the constraint equation in (3.20), we can see that
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Linearised Hydrodynamics. — For the linearised hydrodynamics, again we consider

the linearised velocity and the temperature field

ua ! (1, u
i

(t)), T̃c(t, xi) ! r0 + �r0(t, xi). (3.43)

The Ward identity yields the following momentum non-conservation equation (3.31)
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u
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After redefining the velocity v
i

,
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i
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⇣
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i

, v
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u
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, (3.45)

the Ward identity for momentum non-conservation equation then up to order O(k4) becomes
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Assuming @
t

v
i

= � !v
i

and considering @
i

P̃ = s̃c@iT̃c , we have

v
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From which we obtain the solution of v
i

v
i
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@
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T̃c + · · · , (3.48)
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If we identify

2⇤ =
r20
L2

f 0(r0) = 20, (104)

we have checked that we can recover the Rindler fluid with momentum relaxation. In partic-
ular, the corrections the momentum relaxation rate with the dimensionless constance

lim
rc!r0

`⇤T⇤

s⇤

=
`0T0

s0
= �1. (105)

Near boundary limit. — The near boundary limit r
c

! 1 of the AdS is more easier
to obtained, since we already kept the conformal factor in the metric. We can simply set

c
�

! 1, c⇤ ! 1, �⇤ ! 1. (106)

We can recover all the result in the boundary. In particular, the dimensionless number
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For example, ⌧̃2(1) = (9 ln 3�p
3⇡)/18 and ⌧̃3(1) = ln 2/2 match with the values in [63, 64].

4 Conclusion and Discussion

In this paper, we firstly introduce the momentum relaxation in Rindler fluid, which lives
on the timelike cuto↵ surface in Rinlder frame. The translational invariance is broken by
massless scalar fields with weak strength k. And the derivative expansion in relativistic fluid
is assumed to be @

a

⇠ k2. We then solved the gravitational field and scalar field equations up
to order k3, and obtain the heat conductivity of Rinlder fluid. Through linearise the Ward
identity up to order k4, the momentum relaxation rate up to order k4 in (47) is obtained.
Through introducing a finite cuto↵ in AdS spacetime and consider both of the near horizon
limit and near boundary limit, we also show that how the momentum relaxation in Rindler
fluid flow to the dual fluid living on the boundary of AdS.

The breaking of translational invariance modifies the conservation equations of relativistic
hydrodynamics into @

a

T a

b

= @
b

�
I

hO
I

i, where the Ward identity for the stress tensor controls
how momentum relaxes to equilibrium through scattering o↵ the scalars. Notice that beyond
the leading order that was studied in [52] with @

a
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i
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, the new holographic Ward
identity up to order k4 suggested in [63] is
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with the acceleration a
i

= @
t

v
i

. It is in (43) for our Rindler fluid , and in (93) for our cuto↵
AdS fluid. While the heat conductivity and momentum relaxation rate up to order k4 is
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For example, ⌧̃2(1) = (9 ln 3�p
3⇡)/18 and ⌧̃3(1) = ln 2/2 match with the values in [63, 64].

4 Conclusion and Discussion

In this paper, we firstly introduce the momentum relaxation in Rindler fluid, which lives
on the timelike cuto↵ surface in Rinlder frame. The translational invariance is broken by
massless scalar fields with weak strength k. And the derivative expansion in relativistic fluid
is assumed to be @
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⇠ k2. We then solved the gravitational field and scalar field equations up
to order k3, and obtain the heat conductivity of Rinlder fluid. Through linearise the Ward
identity up to order k4, the momentum relaxation rate up to order k4 in (47) is obtained.
Through introducing a finite cuto↵ in AdS spacetime and consider both of the near horizon
limit and near boundary limit, we also show that how the momentum relaxation in Rindler
fluid flow to the dual fluid living on the boundary of AdS.

The breaking of translational invariance modifies the conservation equations of relativistic
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how momentum relaxes to equilibrium through scattering o↵ the scalars. Notice that beyond
the leading order that was studied in [52] with @
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with the acceleration a
i

= @
t

v
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. It is in (43) for our Rindler fluid , and in (93) for our cuto↵
AdS fluid. While the heat conductivity and momentum relaxation rate up to order k4 is
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where `c given in (3.54) is one of our main conclusions. In particular, the dimensionless

constant has two limits,
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(3.57)

Near the horizon it recovers the correction in Rindler fluid (2.43), and near the infinity

boundary it recover the correction in AdS fluid [63, 64]. Where ⌧̃
p

(1) is given in (3.64),

which also appears in the second order transport coe�cients of the dual conformal fluid [16].

In order to keep the correct physical dimensions, we have restored the surface gravity 0 in

Rindler fluid instead of setting 20 = 1 in the literature [36], and we keep the AdS radius L

in the AdS cuto↵ fluid. After changing into the notations of the conformal coordinates with

(3.59), we can also recover the conversion and results in [34].

Near horizon limit. — In order to take the near horizon limit rc ! r0 , and match

with the gauge choose in the Rindler fluid, we can choose the gauge g(1)
uu

(r0) = 0 in (3.15) and
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We need to make the coordinate transformation

xa ! rc
L
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L
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L

p

f 0(r0)(rc � r0) = �0 . (3.59)

The near horizon limit indicates
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+O(�2

c
). (3.60)

After identifying

2c =
r2
0

L2
f 0(r0) = 20 , (3.61)

we can recover the Rindler fluid with momentum relaxation. In particular, the following

dimensionless quantity in (2.43) is re-obtained from the near horizon limit,
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Near boundary limit. — The near boundary limit rc ! 1 of the cuto↵ surface in

AdS is easier to reach, since we kept the conformal factor in the metric (3.12). Refer to the

procedure in [34], we can simply set

c
�

! 1, c⇤ ! 1, �c ! 1, (3.63)

to recover all results at the AdS boundary. In particular, the dimensionless number
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For example, ⌧̃2(1) = (9 ln 3�p
3⇡)/18 and ⌧̃3(1) = ln 2/2 match with the values in [63, 64].
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then up to order O(k4) the Ward identity for momentum non-conservation equation becomes
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as well as the momentum relaxation rate
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Thus from the definition of the the heat current, we can read out the heat current
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which lead to the heat conductivity with momentum relaxitation
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Near horizon limit. — In order to take the near horizon limit r ! r0, and match
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We need to make the coordinate transformation
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as well as the momentum relaxation rate
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Thus from the definition of the heat current hQ
i

i, we can read o↵

hQ
i

i ⌘ hT t

i

i = (Ẽ + P̃)v
i

= �̃
!

@
i

T̃c , (3.51)

which leads to the heat conductivity with momentum relaxation

̃
!

=
1

1� !⌧
c

4⇡s̃c T̃c

k2
, ⌧�1

c

=
k2

4⇡T̃c



1� `cTc

sc

k2

T 2
c

�

+O(k6). (3.52)

In the DC limit ! ! 0, this expression reduces to the formulae in terms of the local s̃c and

T̃c given in (3.37) and (3.38),

̃DC ⌘ lim
!!0

̃
!

=
4⇡s̃c T̃c

k2
. (3.53)

For simplification, we can rewrite `c in (3.50) as the dimensionless form

⇠
c

⌘ `cTc

sc

= (p+ 1)



⌧̃
p

(rc)�
rc ⌧̃

0
p

(rc)

(p� 1)

�

, ⌧̃
p

(r) ⌘
Z

r

r0

dr̃ r2
0

r̃3f(r̃)

✓

1� rp�1
0

r̃p�1

◆

. (3.54)

3.3 Running of the Cuto↵ surface as Wilson RG flow

In the fluid/gravity correspondence with a cuto↵ surface, [22–25], the running of the cuto↵

surface is interprected as the wilson renormalison group in holography. A recent field theory

discussion can be found in [71]

Two figures will be added here, based on (3.54)

The breaking of translational invariance modifies the conservation equations of relativistic

hydrodynamics into @
a

T a

b

= @
b

�IhOIi, where the Ward identity for the stress tensor controls

how momentum relaxes to equilibrium through scattering of the scalars. Notice that beyond

the leading order that was studied in [52] with @
a

T a

i

= �⌧�1
c

T a

i

, the new holographic Ward

identity up to order k4 suggested in [63] is

@
t

T t

i

+ @
i

P = �⌧̄�1
c

Q
i

� `ck
2a

i

, ⌧̄�1
c

=
k2

4⇡T̃c

, (3.55)

with the acceleration a
i

= @
t

v
i

. It is in (2.42) for our Rindler fluid, and in (3.46) for our

cuto↵ AdS fluid. For the cuto↵ AdS fluid, the heat conductivity and momentum relaxation

rate up to order k4 are

̃
!

=
1

1� !⌧
c

4⇡s̃c T̃c

k2
, ⌧�1

c

=
k2

4⇡T̃c

✓

1� `ck
2

Tcsc

◆

, (3.56)
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where `c given in (3.54) is one of our main conclusions. In particular, the dimensionless

constant has two limits,

lim
rc! r0

⇠
c

= �1, lim
rc!1

⇠
c

= (p+ 1)⌧̃
p

(1), ⇠
c

⌘ `cTc

sc

(3.57)

Near the horizon it recovers the correction in Rindler fluid (2.43), and near the infinity

boundary it recover the correction in AdS fluid [63, 64]. Where ⌧̃
p

(1) is given in (3.64),

which also appears in the second order transport coe�cients of the dual conformal fluid [16].

In order to keep the correct physical dimensions, we have restored the surface gravity 0 in

Rindler fluid instead of setting 20 = 1 in the literature [36], and we keep the AdS radius L

in the AdS cuto↵ fluid. After changing into the notations of the conformal coordinates with

(3.59), we can also recover the conversion and results in [34].

Near horizon limit. — In order to take the near horizon limit rc ! r0 , and match

with the gauge choose in the Rindler fluid, we can choose the gauge g(1)
uu

(r0) = 0 in (3.15) and

fix �⇣
c

through

g(1)
uu

(r0) = 0 ) �⇣
c

=
L2�c

r0(p+ 1)

✓

1� p

2

rc � r0
r0

+ ...

◆

. (3.58)

We need to make the coordinate transformation

xa ! rc
L
xa,

rc
L
�c !

r0
L

p

f 0(r0)(rc � r0) = �0 . (3.59)

The near horizon limit indicates

f(r)

f(rc)
! f 0(r0)(r � r0)

f 0(r0)(rc � r0)
+O(�2

c
). (3.60)

After identifying

2c =
r2
0

L2
f 0(r0) = 20 , (3.61)

we can recover the Rindler fluid with momentum relaxation. In particular, the following

dimensionless quantity in (2.43) is re-obtained from the near horizon limit,

lim
rc!r0

h`cTc

sc

i

=
`0T0

s0

= �1. (3.62)

Near boundary limit. — The near boundary limit rc ! 1 of the cuto↵ surface in

AdS is easier to reach, since we kept the conformal factor in the metric (3.12). Refer to the

procedure in [34], we can simply set

c
�

! 1, c⇤ ! 1, �c ! 1, (3.63)

to recover all results at the AdS boundary. In particular, the dimensionless number

lim
rc!1

h`cTc

sc

i

= (p+ 1)⌧̃
p

(1), ⌧̃
p

(1) ⌘
Z 1

r0

dr̃ r2
0

r̃3f(r̃)

✓

1� rp�1
0

r̃p�1

◆

. (3.64)

For example, ⌧̃2(1) = (9 ln 3�p
3⇡)/18 and ⌧̃3(1) = ln 2/2 match with the values in [63, 64].
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