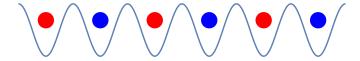


Holographic doped Mott insulator

Alexander Krikun (Instituut Lorentz, Leiden)

MBQC 2017 Nordita, October 4, 2017

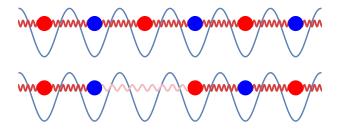

References

arXiv:1512.02465 arXiv:1701.04625 arXiv:1708.08306 arXiv:1710.XXXXX arXiv:1710.XXXXX

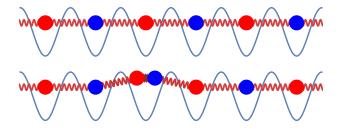
Tomas Andrade, **A.K.**Tomas Andrade, **A.K.**T.Andrade, M. Baggioli **A.K** and N. Poovuttikul T.Andrade, **A.K.**, K.Schalm and J.Zaanen **A.K.**

Mott insulator

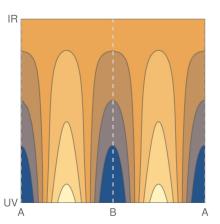
Take the periodic lattice, half-filled with electrons


Mott insulator

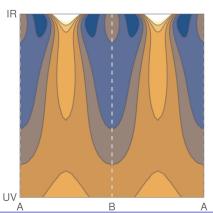
Include interaction between electrons


Doped Mott insulator

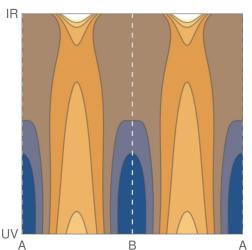
Doping either removes an electron


Doped Mott insulator

Or adds an electron


Take the ionic lattice

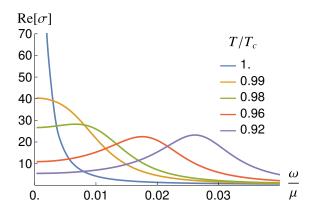
$$\mu(x) = \mu_0 \left(1 + A \cos(kx) \right)$$



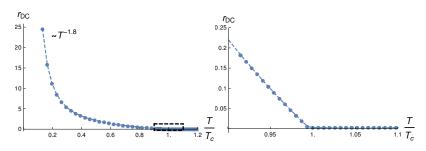
Take the spontaneous inhomogeneous structure

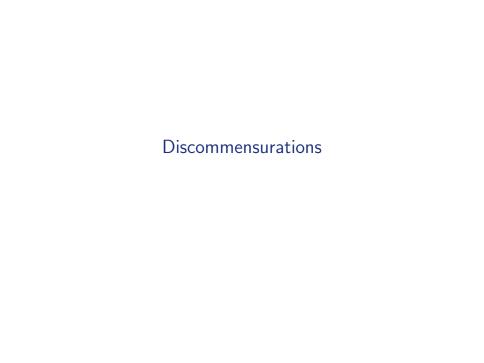
$$S = \int d^4x \sqrt{-g} \left(R - \frac{1}{2} (\partial \psi)^2 - \frac{\tau(\psi)}{4} F^2 - V(\psi) \right) - \frac{1}{2} \int \vartheta(\psi) F \wedge F$$

They form commensurately locked state



The locked state features the staggered current pattern


Metal - insulator crossover


Drude peak is pinned at T_c

Metal - insulator crossover

At low temperature this is an algebraic insulator

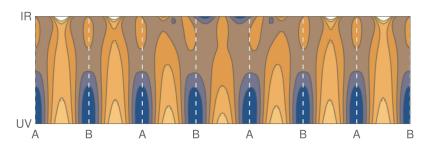
Commensurate fractions

Suppose lattice has momentum k and period λ_k And spontaneous wave has momentum p and period λ_p

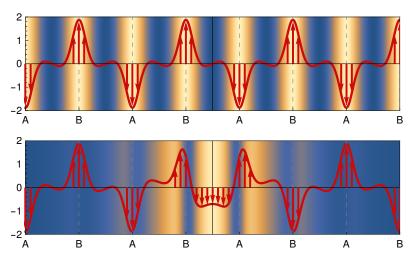
The state with commensurate fraction:

$$\frac{N_p}{N_k} = \frac{p}{k}$$

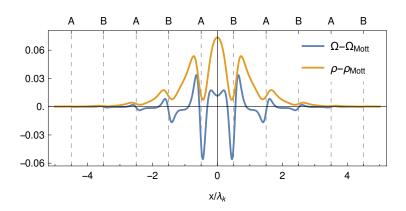
Has a unit cell of the size


$$\lambda_{\Sigma} = N_{p}\lambda_{p} = N_{k}\lambda_{k}$$

Almost commensurate state has $N_p = N_k + 1$


$$\frac{N_p}{N_k} = 1 + \frac{1}{N_k}$$

One discommensuration per N_k lattice units

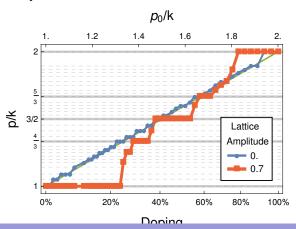

The mismatch of the periods is accounted for in the core.

Discommensuration is a domain wall in the staggered current

Discommensuration is a soliton with finite size and positive charge

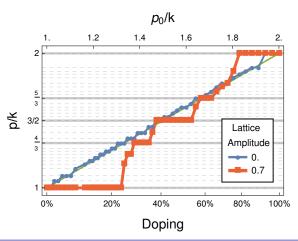
Doping the holographic Mott insulator

Doping

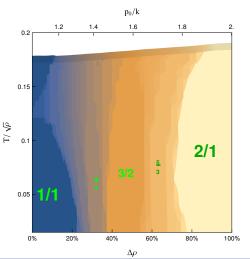

By **doping** one changes the charge density. The excess charge can be stored in discommensurations.

State with finite density of discommensurations (n_d) is a *higher commensurate state*

$$\frac{N_p}{N_k} = 1 + \frac{N_d}{N_k} \equiv 1 + n_d$$

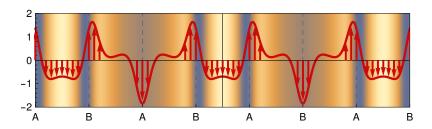

Higher commensurate points

Higher commensurate states are assumed due to commensurate lock in when the periods of pure spontaneous wave and the lattice are significantly different.


Higher commensurate points

Keeping the lattice constant fixed one can change the period of spontaneous structure by tuning μ_0 or charge density (doping)

Phase diagram of commensurate states


Commensurate lock in is stronger at lower temperature

Discommensuration lattices

Doped Mott insulator has finite density of discommensurations which arrange themselves as periodic lattices.

$$\frac{N_p}{N_k} = 1 + \frac{1}{3} = \frac{4}{3}$$

Conclusion

- Holographic Mott insulator is the lowest order commensurate state of the spontaneous wave.
- Doping promotes higher commensurate states and discommensurations
- Discommensurations are similar to spin stripes observed in reality
- Higher commensurate lock in makes discommensuration lattices robust against doping.