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• solids 

• liquids 

• gases 

• plasma
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H Y D R O DY N A M I C S



H Y D R O DY N A M I C S
• from standard liquids and gases to quark-gluon plasma 

• low-energy limit of QFTs (effective field theory) 

• tensor structures (phenomenological gradient expansions) with 
transport coefficients (microscopic)
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H Y D R O DY N A M I C S

• conformal (Weyl-covariant) hydrodynamics 

• infinite-order asymptotic expansion 

• classification of tensors beyond Navier-Stokes 

first order: 2 (1 in CFT)  -  shear and bulk viscosities  

second order: 15 (5 in CFT)  -  relaxation time, … [Israel-Stewart and extensions]   

third order: 68 (20 in CFT)  -  [S. G., Kaplis, PRD 93 (2016) 6, 066012, arXiv:1507.02461]      

Tµ
µ = 0

g
µ⌫

! e�2!(x)g
µ⌫ Tµ⌫ ! e6!(x) Tµ⌫

! =
OHX

n=0

↵nk
n+1Tµ⌫ =

1X

n=0

Tµ⌫
(n)

5



H Y D R O DY N A M I C S
• diffusion and sound dispersion relations in CFT 

• loop corrections break analyticity of the gradient expansion (long-time tails), but are 1/N 
suppressed [Kovtun, Yaffe (2003)]  

• entropy current, constraints on transport and new transport coefficients (anomalies, 
broken parity) 

• non-relativistic hydrodynamics  

• hydrodynamics from effective Schwinger-Keldysh field theory with dissipation               
[Nicolis, et. al.; S. G., Polonyi; Haehl, Loganayagam, Rangamani; de Boer, Heller, Pinzani-Fokeeva; Crossley, Glorioso, Liu] 
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( W E A K )  C H A O S



O T O C ’ S  A N D  C H A O S
• OTOC of local, unbounded operators grows exponentially 

• not all OTOC’s can grow indefinitely  

• think of a local spin chain or a fermionic theory [Kukuljan, S. G., Prosen, PRB 96 
(2017) 6, 060301, arXiv:1701.09147]
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triangular inequality: 
Lieb-Robinson theorem:

• OTOC is heavily suppressed for early times                       by the LR theorem 

• after t*, OTOC rapidly saturates; it does not grow exponentially after that!  

• this is not chaos as normally defined; Lyapunov exponent requires a limit
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D O T O C ’ S  A N D  W E A K  C H A O S

• proposal: consider instead a density of OTOC of non-local (smeared) 
operators 

• unlike the OTOC, the DOTOC grows indefinitely, but is bounded 
polynomially
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E X A M P L E  O F  W E A K  C H A O S
• kicked Ising model 

• it is chaotic [Pineda, Prosen] 

• integrable                           
vs.                                      
non-integrable
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O T O C  A N D  S H O C K  W A V E S  
• Lyapunov exponent and butterfly velocity follow from the holographic 

shock wave on the horizon of a two-sided black hole 

• Lyapunov exponent for black holes saturates a conjectured bound 
[Maldacena, Shenker, Stanford] 

• butterfly velocity may play a role in bounding diffusion [Hartnoll; Blake] 

• we want to understand these claims from the point of view of 
hydrodynamics (sound modes)
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C H A O S  F R O M  H Y D R O DY N A M I C S
• reconstruct the solution in terms of linearised longitudinal (sound) waves 

at infinite coupling and infinite N [S.G., Schalm, Scopelliti, arXiv:1710.00921] 

• in the sound channel, look for a (radially) null solution at the horizon 

• use the ansatz 

• impose regularity and solve (in pure N=4)
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C H A O S  F R O M  H Y D R O DY N A M I C S
• regularity demands a single mode solution  

• we recover known properties of the holographic butterfly effect  

• consider more general theories (with bulk matter content) and an 
important assumption of horizon decoupling 

• (advanced and retarded) diffusion equation with horizon diffusion 
constant of Blake
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C H A O S  F R O M  H Y D R O DY N A M I C S
• the sound mode is a smeared shock wave (in KS coordinates) 

• quasinormal mode (pole of the retarded stress-energy tensor correlator) 
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× sound to third order in 
the hydro expansion 

[S.G., Kaplis] 
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I M P L I C AT I O N S
• momentum diffusion for these theories can be computed from the horizon 

membrane paradigm [Kovtun, Son, Starinets] 

• this ratio can be anything in the presence of additional scales or coupling 
constant(s) 

• however, the same physics controls scrambling and hydrodynamics 

• similar to the dilute gas 

• a form of BBGKY hierarchy truncation for large-N, infinitely strongly coupled CFTs 

• turbulence?
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H O L O G R A P H Y  AT  W E A K ( E R )  C O U P L I N G

• higher-derivative gravity (IIB 
supergravity, Gauss-Bonnet, …) 
gives rise to expected weakly 
coupled physics extremely quickly 
[S.G., Kaplis, Starinets, …] 

• kinetic theory, quasiparticles, 
formation of branch cuts, … 
destruction of hydrodynamics 

• the same construction of a smeared 
shock waves works in GB 

• what does this mean for 
hydrodynamics/chaos when hydro is 
less robust?
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