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Introduction

* In many-body systems, charge and energy typically diffuse over
long distances.

e Diffusivities have units of velocity® x time

* In a Fermi liquid, there is a natural velocity and timescale:
Fermi velocity and quasiparticle lifetime.

* What about when there are no quasiparticles ? In various cases:
D ~ v4T
B'L

* I'm going to talk about when and why this works robustly in
holographic theories.



Main Results

* The main result is that the low temperature thermal diffusivity
is related to the chaos parameters

K h
Dp = — ~ UATL ~ 05 ——
Cp B BkBT

e D and vj7y depend in a complicated way on UV details of
the theory.

* But the coefficient is a property of the IR fixed point only.
* This relation is robust to changing the theory in various ways.

* It works because )7 and VBRTL depend only on the metric
near the horizon.



Outline of the talk

* |. Einstein relations and thermal diffusivity

e 2. Thermal diffusivity and chaos in holographic theories

* 3. Some special cases



Diffusion of charge and energy |

* What is the thermal diffusivity?

e Perturbations of energy density 0 & charge density 0p obey
continuity equations 00 +V - j. =0
. =

* It is easier to study heat rather than energy 70,05 +V - js =0
where Tds =0 —pudp  Js = Je — K]

* Assume that at the longest scales, only excitations are long-
wavelength perturbations of conserved quantities 0 and 0p

oThen j — —01V58—02V5,0—|-,
js = —CsVe — CuVip + ...

assuming that momentum is not conserved.



Diffusion of charge and energy Il

* This produces coupled diffusion equations for charge & heat.

* Change variables using the susceptibility matrix X
( 0p > _ ( (Op/Op)p  (9p/OT), ) ( op )
s (0s/0u)y  (0s/0T), o1
- j=—0oVu—aVIl+...
Jjs = —ad'Vu —rVIT + ...

* |n these variables, the coefficients are the elements of the

conductivity matrix . i\ _ (o « E
js/T N 84 R/T —VT ’
e So the diffusion equations are 9, ( g’g ) =Y. x 'V? ( (55;) )

* The diffusivity matrix X - x ! is typically very complicated.



Thermal diffusivity

* There are simpler diffusive processes.

* An external electric field will produce charge and heat currents
j=—-0(Vu—FE)—aVT+...
js = —aT (Vu—FE)—kVT + ...
* Set up the electric field such that V-5 =0: E=Vu+ §VT

* Then perturbations in the temperature §T = <8—T> 05 + (a—T> 5p
P s

obe K 75 oF
! 0,0T = V25T
Cp
B Ta? 0
where HJE—VJT j:O:R—T& and Cp:T(ﬁ_;>p
K

* This is the thermal diffusivity D1 = -
0



Holographic theories

* | will look at holographic theories where there is a conformally
invariant fixed point at high energies.

* Deform this by turning on a density and a periodic potential.
* There is an RG flow to a different low energy (IR) fixed point.
* In general, it is not relativistic and does not obey hyperscaling.

* The class of gravitational actions are

Charmousis et al
S = /d4x\/—g R — ! (89)° + V(¢) — MF2 _Yl) Z (8¢:)° | Gouteraux
2 4 2 i=1,2 Donos & Gauntlett

dr?

foy TROEE A £0 g =ma

breaks translational symmetry in a homogeneous & isotropic way

ds® = —f(r)dt* +



IR fixed point solutions

* Near the horizon, assume exponential potentials

V() = Voe’® W () = Woe? Z(¢) = Z2e7

* These support solutions with logarithmically running dilaton

and power law metric Charmousis et. al.

Fr) = LS5 h(r) = L

o(r) = ¢1logr Ai(r) = Agr™
* These are the IR fixed points.

* They are characterised by the dynamical critical exponent z
and the hyperscaling violating exponent 4

* And also by the two length scales L; and L,



Small temperature solutions

e At small temperatures, there is a black hole in the IR.

_________ AdSboundary v f)=r 4. hlr) =1 +4...
A

complicated intermediate

metric
24+z—06
Black hole flr) = Lt_QT% (1 — (%h) = ) + ...
horizon rh .-

* The IR exponents control scaling in T of some observables e.g.

20 4—260

dw(z—0)\ = L, *
s = 4mwh(ry) 7T<2—|—z—6’> L2

2—6
z

* The prefactor depends in a complicated way on UV details.



Chaos in holographic systems

* The chaos parameters are calculated by studying perturbations
of the two-sided black hole.

e A small amount of energy injected at early time t_from one
boundary produces a gravitational shockwave solution

1
ds® = A(uv)dudv + h(uv)dz? — A(uv)d(u)g(x)du*  g(x) ~ ﬁe%T(tw_”B/x)

* This gives exponential growth in the correlator
Ca,t) = —{[W(x,t), V(0,0)]")7

* The Lyapunov time and butterfly velocity are
21T 1

UQB — T, = ——
h/(rh) L= 27T

Roberts, Shenker & Stanford
Blake

* They depend on the metric near the horizon. Roberts & Swingle



Holographic transport

* All of the conductivities depend only on the action and solution

near the horizon Blake & Tong ; Donos & Gauntlett
4t p? A7 p _ AsT
— 7 — -
7= AU G T Y T Y@
* The thermal conductivity we are interested in is
To? B AnsTZ(p(ry))h(rny)

K —

K —

o p?+m?Y(S(rn))Z(d(rn))h(rn)

* In contrast, the elements of the susceptibility matrix typically
depend on the details of the entire bulk solution.

* One exception is the heat capacity at low temperatures, due to
the Bekenstein-Hawking entropy formula:

2—0 2—0
CPZT@: S =

oT 2z z

Amh(ry)



Thermal diffusivity and chaos

* So thermal diffusivity and chaos parameters can be determined
from the solution near the horizon (the IR fixed point)
ArsTZ (d(rp))h(ry) 2 -6 1

K = Cp = drch(ry) veTL =

p? +m2Y (¢(rn)) Z(P(7h))1(7h) z W (rn)

* Therefore they are power laws in temperature, with a prefactor
that depends on microscopic details e.g.

 z(z—0) (2 —0)\ = L 22=2 ]2
DT_(Q—H)(Qz—2)<2+z—9> Ly = LT
<
e But remarkably: Dy = U2 TL
! 2(z—1) P

* All dependence on the length scales is gone!

* The prefactor depends only on the IR fixed point exponent z.



Why does this work?

* Why does all dependence on the IR length scales disappear ?

* The thermal conductivity appears to depend on the matter
fields and couplings in a complicated way
ArsTZ(p(rr))h(ry)

P+ m?Y (6(r) Z(6{ra) h(ra)
* One of the Einstein equations is

h(r)f"(r) = m*Y (¢(r)) + h(r) Z(6(r)) Ay (r)* + f(r)h" (r)

* By evaluating this on the horizon, find that all matter
dependence in /£ can be replaced by geometry:

f'(rn)
£ (rn)

* This is not true of any other of the conductivities.

K =

Kk = 47



Cancellation of length scales

* So in general we have

F(rn) B 2—0 V2T — 1
() - T )

* And therefore p > ' (ra)h (1)

D — — — 2
g c, 2—0 f"(rp)h(rp) * UBTL

Kk =4

* The metric near the IR fixed pointis  f(r) ~ L;?r%  h(r) ~ L7%r#
* And so it is manifest that all length scales will drop out so that
D ~ ?)2BTL

* This is a consequence of the fact that K, C, and viTr, all
depend only on the metric near the horizon.

* They are otherwise insensitive to the matter fields & couplings.



Special cases

* There are two special cases: 2 = 00 and 2z =1
eFor 2 = OO ( AdS, x R? metric ), h(r) = constant

C, of the IR fixed point vanishes. So it is determined by the
leading irrelevant deformation of the fixed point.

i Blake & D
e One still finds Dp = CvgTy ake & Donos

Baggioli, Gouteraux, Kiritsis, Li

*Forz =1, f'(rn) =0 for the fixed point since « = 4”;'/'((?)
The leading deformation around the fixed point determinesh}i

* In this case, DT > ”UQBTL RD, Gentle, Gouteraux

* The IR fixed point is neutral and translationally invariant.



Generalisations

* The relation for K is robust to various generalizations.

f/hd—Q
Ihd/2—1Y1
(FRI=Ty |

* It works in the presence of an external magnetic field B, where

Tay _, f'(ra)
oL f(rn)

* It applies when the Maxwell action is replaced by a DBI action.

* It generalizes to any dimensiond k =4x

R, = R, —

* There is an analogue for anisotropic black hole solutions.

: : 2 : .
e So in all these cases, the relation D ~ vpTL will still hold.



Conclusions

* For a wide class of holographic examples, the thermal diffusivity
is related to the chaos parameters

<

) UQB TT,

e D7 and vjTs depend only on the metric near the horizon.
* Two important generalisations to investigate more carefully are
). inhomogeneous solutions

2). higher derivative theories of gravity

e Similar relations also been observed in various non-holographic
systems.

* We would like to better understand why.



Extra slides



Translationally invariant theories

* Translational symmetry breaking is not necessary for the results

* When m=0, the elements of the conductivity matrix are infinite.
But K is finite.
K 2z 5

* At low temperatures, D = — = UBTL
c, 2(z—1)

* Holographic theories with m=0 are described by relativistic
hydrodynamics.

* Relativistic hydro has a diffusive excitation with diffusivity

—1
2p p’
D= P
9Q | Xpp €_|_PX5P + (e—I—P)

* At low temperatures ) — D RD, Gentle, Gouteraux

2 X€€



Chaos in holography

e The chaos commutator can be written as
C(z,t) = —([W(z,t),V(0,0)]*)r = (TFD| [W(z,t), V(0,0)]*| TFD)
'TFD) = Z~1/2 ZG_BE”/Z‘W,)L}TL}R

* Thermofield double state is the two-sided black hole

aaaaaaaaaaaaaaaaaaa
vvvvvvvvvvvvvvvvvvvv

dr

ds* = —f(r)dt* + + h(r)dz? My 5
(r)d* + 505+ h(r) o
/ / " d \A’
UL — _ef (rp)r«(r) ’LL/’U — _e—f (rn)t Te = /OO ﬁ:) N
ds* = A(uv)dudv + h(uv)dz? AAAAAAAAAAAAAANAAAN

* A small perturbation at an early time ¢,, can backreact a lot

6Ty ~ Ee™ v §(u)é(x) ty ~ T og N?

Shenker & Stanford
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