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A sound of thunder (1952)

Ray Bradbury

THE  BUTTERFLY  EFFECT

Tiny perturbation in the past 
has dramatic consequences at 
present in chaotic systems for 
local observables




THE  BUTTERFLY  EFFECT: 
classical vs. quantum physics 

In a chaotic classical system a small 
perturbation leads to the exponential 
divergence of trajectories characterized 
by          Lyapanov time 1/�

Generalization to a closed chaotic 
quantum system via  Loschmidt echo
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DIAGNOSTIC OF QUANTUM CHAOS
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Pair of rather general Hermitian operators  W, V in a quantum 
mechanical system. System is chaotic.

These correlation functions will become small  

becomes large

approaches

D. Roberts and D. Stanford, PRL (2015) 

For large times:
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quantum butterfly effect
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FIRST APPEARANCE OF OTOC

Used                                to get non linear response to electromagnetic field 
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In the semiclassical approximation 
[single free particle in a smooth potential]

if the motion is chaotic
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revived by Kitaev (2014) 



OTOC AND SCRAMBLING

hW (t)V (0)W (t)V (0)i

Scrambling
and it is usually considered a property of a quantum state

Page, gr-qc/9305007 

Scrambled state

No scrambled state

Consider a  random pure state of the system

Entropy of the subsystem A

Examples:

what has to do with ?? 



TRIPARTITE INFORMATION 
(as a measure of scrambling)
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⇢ = |U(t)ihU(t)|

I(A : C) = SA + SC � SAC

Tripartite information

Entanglement entropy

Mutual information

Hosur et al. ,1511.04021 

SAC = �Tr⇢AC ln ⇢AC ⇢AC = TrBD⇢

Have a large negative value for systems that scramble
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I(A : CD)� I(A : C)� I(A : D) is a natural measure of scrambling
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BUTTERFLY EFFECT IMPLIES 
SCRAMBLING
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Consider a complete basis of Hermitian operators

The butterfly effect                      implies  scrambling

If
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decay of OTOC gives information on scrambling time  



THIS WORK

hW (t)V (0)W (t)V (0)i

• To develop the analytic tools to study

choose as a quantum chaotic system in condensed matter physics 
where there is a microscopic theory and we can do calculations

main ingredient:

1. electrons interacting with localized bosonic degrees of  
freedom
2. electrons in disorder potential
3. electrons weakly interacting with each others



KELDYSH AND KINETIC EQS

H = H0 +Hi ⇢(H) =
e��H

Tre��H

H(t) = H +H 0(t)

hOH(t)i = Tr[⇢(H)OH(t)]

correlation functions: contour-ordered Green function:

equilibrium

out of equilibrium
H 0(t) = 0 t > t0



Larkin rotation

Dyson Equations

Off-Diagonal terms: contain information on the population of these states



Gradient Approximation
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FDT at equilibrium

quasiparticle approximation

out of equilibrium search for solution of the form

collision integral
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GREEN FUNCTIONS in UP/DOWN WORLDS
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Green Functions:

Inter-worlds Green Functions: 

Meaning:  distribution function of electrons (or holes) x times coherence
                 between the Worlds



DYSON EQUATIONS
Dyson equations in the formalism 4x4
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A
0 = 1
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↵� � (Ĥ0 � ⌃A

� )�GR
↵ � ⌃K

↵� = 0.

The Keldysh component of the Green function can be conveniently 
parametrized by:

GK
↵� = GR

↵ � F↵� � F↵� �GA
�.

↵ = � Fuu and Fdd

↵ 6= � Fud and Fdu



STABILITY AND INSTABILITY
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MODELS

In all these models the main ingredient are mobile electrons that
form a Fermi sea. They are described by the quadratic Hamiltonian
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1. Electrons interact with dispersionless phonons with frequency 



KINETIC EQUATIONS 
(semiclassical approximation)

In the semiclassical limit kinetic equation becomes local in time and phase
space. This simplification is possible if the rate of the electron scattering is 
much smaller than T (for e-e or e-ph interactions) or Fermi energy
(for electrons in disorder potential)
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COMPARE DIAGONAL AND NON 
DIAGONAL COLLISION INTEGRALS

Except for outgoing terms the off diagonal part is very similar:

el-ph



COMPARE DIAGONAL AND NON 
DIAGONAL COLLISION INTEGRALS

el-el



COMPARE DIAGONAL AND NON 
DIAGONAL COLLISION INTEGRALS

electrons disorder potential 

Relaxation time

⌫ density of states

Born approximation:
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Exactly the same of the diagonal Keldysh function



KINETIC EQUATION FOR ELECTRON-
PHONON PROBLEM 

phonon scattering does not depend 
on electron momentum



LIMIT ⌘ ⌧ 1

still non linear and non local in energy space



SIMPLEST CASE: LOW DENSITY 
PHONONS AND HIGH TEMPERATURE

⌘ ⌧ 1 !0 ⌧ T

- We can neglect        in       and arguments of    . !0 I± L = 2/y

- We look for solutions of the form:

classical limit: large number of excitations are already present, perturbation 
results in the evolution that leads to uncorrelated fixed point                        with 
the characteristic time of the order of  ⌧
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INSTABILITY AT LOW TEMPERATURE REGIME

I� > I+

tqu⇤ = ⌧/(2L0)

!0 � T quantum limit: characteristic time dominated by exponentially 
small number of excitations

for                L is large|✏| > !0



INSTABILITY FOR 
ELECTRON_ELECTRON INTERACTION

t⇤ ⇠ ⌧FL



SPATIAL STRUCTURE OF INSTABILITY
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Diffusion coefficient generally contains different time scale than instability time
that coincide only for simplistic models.
In the presence of elastic scattering D becomes smaller and propagation slows 
down
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PROPAGATION OF INSTABILITY:
COMBUSTION WAVES
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Then instability grows spatially forming a non-linear wave that moves 
with well defined velocity
In 1D the solution                     of the front obeys 
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NUMERICAL SOLUTION FOR 
DIFFERENT MODELS
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CONCLUSIONS
Propagation of decoherence in many body systems introduced by 
backward time evolution is described by the same equations as 
combustion wave.

We have seen that in the model of electrons 
in disorder potential there is no instability

• For el-ph and el-el interactions the mathematical description of 
OTOC is similar to the description of combustion waves:

n The small initial perturbation first grows exponentially 
remaining local and then it starts to propagate with a constant 
velocity and a well defined front.

n The velocity of the front is always slower than Fermi velocity
n The constant velocity of the quantum butterfly propagation 

agrees with the result obtained in holographical theory of BH


