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THE BUTTERFLY EFFECT

A sound of thunder (1952)

Ray Bradbury

Tiny perturbation in the past
has dramatic consequences at
present in chaotic systems for
local observables




THE BUTTERFLY EFFECT:

classical vs. quantum physics

In a chaotic classical system a small
perturbation leads to the exponential
divergence of trajectories characterized

by 1/A Lyapanov time
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Generalization to a closed chaotic e Ol x(p)
quantum system via Loschmidt echo
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developing in powers of 0 (linear response)
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DIAGNOSTIC OF QUANTUM CHAOS
D. Roberts and D. Stanford, PRL (2015)

Pair of rather general Hermitian operators W, V in a quantum
mechanical system. System 1s chaotic.

—(V, W)= (VW@OW()V)s+ WHVVIW(L))s

—VWQ@Q)VW(t)s — WEH)VW()V)s

. (0)g = = trle Pie— - 14
For large times:

approaches (WW)g(VV)3

overlap

These correlation functions will become small W)V (0)) [V(O)W ()

= <[V’W(t)]2>5 —  becomes large

quantum butterfly effect



FIRST APPEARANCE OF OTOC

SOVIET PHYSICS JETP VOLUME 28, NUMBER 6 JUNE, 1969

QUASICLASSICAL METHOD IN THE THEORY OF SUPERCONDUCTIVITY
A. I. LARKIN and Yu. N. OVCHINNIKOV

Institute of Theoretical Physics, USSR Academy of Sciences

Submitted June 6, 1968

Zh. Eksp. Teor. Fiz. 55, 2262—-2272 (December, 1968)

It is shown that replacement of quantum-mechanical averages by the average values of the corre-
sponding classical quantities over all trajectories with a prescribed energy is not valid in the gen-
eral case. The dependence of the penetration depth on the field is found without making any assump-

tions about the weakness of the interaction between the electrons and the field of the impurities; the
case of very dirty films is also considered.

Used (P(1)p(0)p(¢)p(0)) to get non linear response to electromagnetic field

In the semiclassical approximation
[single free particle in a smooth potential ]

R

; ; ; ; op.(t
if the motion 1s chaotic 8];(%; ~ et

A Lyupanov exponent Lyapunov

revived by Kitaev (2014)



OTOC AND SCRAMBLING

Scrambling Page, gr-qc/9305007
and it 1s usually considered a property of a quantum state

Consider a random pure state of the system [t)
p=Y)(¥| pa=trep
Entropy of the subsystem A Sa4 = —palnpy
14

Shr=Inm when py= TA]

Examples:

9) =10)4l0)p then pgq = |0)a4(0 No scrambled state
14

|'€b> = [|0>A|O>B + |1)A|1)B] then PA — m Scrambled state

what has to do with (W ()V(0)W (£)V(0)) ??



TRIPARTITE INFORMATION

(as a measure of scrambling)
Hosur et al. ,1511.04021

N qubits

s EEE I F :
U(t) = ) uisli){il U@ = 3 [ @U@
— 2N/2 = mn out
5 1,]=
2N« oN  matrix
state

Generalized to imitial statistical ensemble

ZPJWJ W —> SME=—TF i Z\/ZTJWJ in |¢J>out

Ex: 1

—BE/Q —iFE;t i == B
ToF0) = 23 el e



Hosur et al. ,1511.04021

4 input
1 2N -1
- A = B - U(¢)) = 9N/2 'ZO s B
=
U
p=U@) U
<4 b HHH—— > 4 < >
A C D B
output
Entanglement entropy  Sac = —TrpacInpac s

Mutual information I(A:C) =54+ Sc — Sac

I(A:CD)—I(A:C)—1I(A:D) isanatural measure of scrambling

Tripartite information
Is=—|I(A:CD)—I(A:C)—I(A:D)]

Have a large negative value for systems that scramble



BUTTERFLY EFFECT IMPLIES

= SCRAMBLING
t mmpu
Consider a complete basis of Hermitian operators
A4 B {A;} {D;}
v tI‘{AiAj} = 2a57;j tr{DiDj} = Qdéij
| =: =:H!!C IPJBI-»: E >
output
Define [(Op(t)04a0p(t)04)s| = 755 Z Aj)p

If [(Op(t)0aO0p(t)Oa)p=0l=€¢ = —{([04,0p(t)]*)s—0 large

€

13 = I3,m7ln S IOgZ

€min
The butterfly effect (€ € 1) implies scrambling I3 — s min

decay of OTOC gives information on scrambling time



THIS WORK

* To develop the analytic tools to study
W)V (0)W(#)V(0))

choose as a quantum chaotic system 1n condensed matter physics
where there 1s a microscopic theory and we can do calculations

main ingredient:

1. electrons interacting with localized bosonic degrees of
freedom

2. electrons in disorder potential

3. electrons weakly interacting with each others



KELDYSH AND KINETIC EQS

equilibrium

H = Hy + H; pH Y=

out of equilibrium

H(t) = H + H'(t) HAy=0 =1
(On () = Tr[p(H)O(2)]

correlation functions:

G <(1,1)=TFi{¢P31)A1)) ,
G>(1,1") = —i{y 1 )Phd1)) ,

G (1,16 =

G11(1,1)= —i{ T (Pi1))) ,

G1(1,1N=G<(1,1"),
G,(1,1)=G>(1,1),

Gy(1,1) = —i{ T (1)) .

Tre—B8H

——

v

|

I

|

I < ol ~”;1 - = =
to

contour-ordered Green function:

G(1,1")= —i{ T, (P 1)P}A1)) ,

YA DPSA1") £ >ty
i'/f}(l')lﬁz’(l) I <cly
G>(L1) t;>.ty,

G<(1,1') t; <.ty .

T (Pl DphA1)) = :

G(1,1"')=

0x(0=T,, |exp [~i [, drHj(r) |0n( |

Napns(®) = ( TexOa(t05 ()01 )0t exp (i | ittt )



Larkin rotation = ==
GR(I,I')‘—"G“(I,I’)—Glz( 1,1')

G=rG, L=75""—i?. g=LéL', =Gy (1,1=6n(1,1),
G4(1,1)=G61,(1,1"—Gx(1,1)
GR GK 2:: {ER ZK =§12(1’1')_622(1,1') )
— A A A
¢=1o0 ¢ 0 = GK(1,1=6 (1,146 »(1,1")
=G11(1,1)+G(1,1),
Dyson Equations
(Go'—2)8G=8(1-1'), (48B)1,1)= [dx, [~ dt,4(1,2)B(2,1),
GR(Gy'—2)=8(1-1"). Gy '(1,1N=[id, —e(1)]8(1—-1"),

Off-Diagonal terms: contain information on the population of these states




Gradient Approximation

G(X,p)= [ dx e PG(X +x/2,X —x/2) .
R=';-(X1+X1'), T=’;'(tl+t1') >

:(ndaB_AAAB
(A®B)(X,p)=e' X%~ %% 4 (X p)B(X,p) .

= A(X,p)B(X,p) + %{A, B}

Keldysh component:
i{w—&,G¥} = -G¥ (24 - 28) + =¥ (G4 - GF)

FDT at equilibrium G* (w,p) = fo(w) (GR(w, p) — G*(w, p)), fo(w)= tanh %
quasiparticle approximation G"(p,x) — G (p,z) = 2mid(w — &)
GX(w,p) = 2mi (2np — 1) §(w — &) np = [1 +e’p] 7!
out of equilibrium search for solution of the form  G*(p,z) = f(p,z) (G (p,z) — G*(p,2))
0
(5 + Voo V) £lp2) = 1112

rEL = ==

collision integral




AUGUMENTED KELDYSH

(B(t)A(0)B(t)A(0)) = (e'Ht Be—iHt AciHt Be—iH! 4

| : B CA;12 Gl
4 ) Ga1..Ga iGia G
o - 6o G G G
( : 5 : i Go1 Ga1i Ga1 Gaa
: — e
2 )
- : - i
! i t - itQ :
u + _‘¢a(t T)‘:
u— > I
————— 7/’3;(070) E :¢T (t' ,,,)
AP ap(t,rst'r') = (Te (alt,NOS(E, 1)) (45(0,005(0,0)) ) Al D
L e - > : :
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GREEN FUNCTIONS in UP/DOWN WORLDS

gA = ( éuu éud ) — : -
& & : >

R Bt r
6= (G @) :<
G G~

iG7(1,2) = (p(1)y (2

: :|:
Green Functions:
iGA(1,2) = — <¢ (Dy'(2) £

Inter-worlds Green Functions:
P 0= e =6 U 6 (0 D)
[R(1,2) = £2i (BT (2)9(1)) = G (1,2) — [G7(1,2) — G*(1,2)].

Meaning: distribution function of electrons (or holes) x times coherence
between the Worlds




DYSON EQUATIONS

Dyson equations in the formalism 4x4

(Hore =370 G
GA @) (FI()T(C)L == XA))

E e —1 6 —1
, Hy =id/dt — H,

|
—>

Diagonal part of the Green function:

(Ho-TMAYoGRA_1  gAr_g san
Gt =" —F 55 d

Non-Diagonal part of the Green function:

The Keldysh component of the Green function can be conveniently
parametrized by:

a=p Fuu and Fyq
Gé{B:G(]jO aﬁ_FaBOGé /

a2 o



STABILITY AND INSTABILITY

quantum kinetic equation
Hho s Faeo by > ioF . Egor 5

. : : . outgolng scatterin Incoming scatterin
quasiclassical approximation SIS ) < &

processes processes
dissipation instability
Diagonal:
Efa(e) = {Eff(e) —= Eﬁ(e)} no(e), mnp(e) = tanh (62_T'u>
Fuu = Faa = no(€) = F. 65 Fermidistribotion Fimction
Off-diagonal:
Fua=1+mng, Fiu=—14+ng correlated worlds solution (unstable)

Fud = Fua =0 uncorrelated worlds solution (stable)



MODELS

In all these models the main ingredient are mobile electrons that
form a Fermi sea. They are described by the quadratic Hamiltonian

Hel = Z‘fp’(p;gwp

1. Electrons interact with dispersionless phonons with frequency wy
(Einstein phonons) with Hamiltonians:

th — Z hwob;[br Hel—ph = ZW@DT(”’)@D(T) U= A(br 4 b;[)
2. Electrons
=D Z U W%

3. Electron

el el /@DT@D wr 'Qbrr T—’T’/)drdfl"/



KINETIC EQUATIONS

(semiclassical approximation)
HgoFag —Fapo Ho= [E&Ro}"ag - Zﬁ - 255

In the semiclassical limit kinetic equation becomes local in time and phase
space. This simplification is possible if the rate of the electron scattering 1s

much smaller than T (for e-e or e-ph interactions) or Fermi energy
(for electrons in disorder potential)

== 5 S
H o Fog — Fap 0 Hy :zh{aJrE%}faﬁ (electrons)
Hpolae ooty — ihw%?ag(w,p; = (phonons)
RHS
{2+ 22 Fanlenirt) = Biilos
5 collision integrals

CUEPQB (w,p; r, t) = [Stph] af



COMPARE DIAGONAL AND NON
DIAGONAL COLLISION INTEGRALS

el-ph
el [, ph (271')(27Z'h)(d+1) el |, \"1° oa ox aa \"1
rwa 1 [dPABM(P;B,®) ( [ )
Stph daa 2 "‘ (27[0))((27Th)(d+1) { |:£el ]a (E,&))?Daa (0)) + [1 ‘ﬂa (P)f;ta' (E)]}

7] (B,0)=P,(@)+F,(R)
£, ] (B.0)=F, (P)-F,(R)

Except for outgoing terms the off diagonal part 1s very similar:

Tqph ] dPdQ M (P; P, w) oh

S ], =1 = o e (e (Ra@) Ty (P)+ Py @) (R)}
Fo dPARM(O; P,o)

5], =51 Gzt E B0 Pos(@)= Py (PIF (B)

2£°(B,0)=[ L] (B.0)+[£ ] (B.Q)



COMPARE DIAGONAL AND NON
DIAGONAL COLLISION INTEGRALS

el-el

dP,dP>dPs M (P, Py; PoP- .
st — / WP dPsMP P PoPs) ¢ pet) (py py Py)Foal(P)

(zﬂ-h)S(d—}-l)
+ [Faa(PS) +-Faa(P2) - -Faa(Pl) — faa(Pl)faa(P2)faa(P3)]}a
L8]] . = Faa(P2)Faa(Ps) — Faa(P1)Faa(P3) — Faa(P1)Faa(P2) + 1.

(2rh)* 1 6(P + Py — Py — Py)| [ [2mhd(ei — €(pi)))

1=1

2
_ |Upz—p _ Ups—pl

M
8h

For off-diagonal (a # ) we obtain

X

Stel L dPldPdegM(P, Pl;PQ.Pg)
[ el] B (27rh)3(d+1)

{~L&(P1, Py, P3)F(P)ap + Fap(Po) Fap(Ps)Fga(Pr)}
where once again

2L (P, Py, Ps) = [Lg]], (P1, P2, P3) + L], (Py, P2, Ps).



COMPARE DIAGONAL AND NON
DIAGONAL COLLISION INTEGRALS

electrons disorder potential

[Stgln] B - / dpl(gfr(if),dpl) {_faﬁ(p) + faﬁ(pl)}a

where 0
T
M(P,pl) — f |Vp—p1 |2 5(517 - fpl)'

Exactly the same of the diagonal Keldysh function

0
53 1(B.t) = = [ (d8)u(B.p") ((pst) = Fu(P',1)
Born approximation: w(p,p’) = 27| Vimp(P — P/)|25(€p ==

of
E = —z//dep/|Vp_p/|2(f(p) = f(P/)) v density of states

Relaxation time =»'=v / (d0p)| Voo |?



KINETIC EQUATION FOR ELECTRON-
PHONON PROBLEM

f;‘d (6’ P t) - f(_€’ t) 73“"1 (0)0) - 3 phonon scattering does not depend
f;iu (6, p,l‘) — —f(E,t) 7Ddu (a)o) - 0. on electron momentum

o _ e @ —w,)+0
o ) =) @)

2zvn  A°
of (€ @ \= r=-= v l= 22
o= L apar ) 0T o)+ 0 (v o) e
00 —
7775:—94‘[ T hva)o
00  —
—=-0+1
T ;
1 —
I.=——[def () f(ct @)
20,

L(x,y)= 2coth(y) — tanh(x+ y)+ tanh(x — y)



LIMIT <1

_ Mwh 1 27wnpp)?

3
|
|
|

TZ_J: = — (2;,, ;);,) f+1-f(e —wo) + I f(e + wo)],
A (g ) P e on) + )]
1 _
Iy = % def(€)f(€ £ wo);

L(z,y) = 2coth (y) — tanh (z + y) + tanh (z — y) .

still non linear and non local in energy space



SIMPLEST CASE: LOW DENSITY
PHONONS AND HIGH TEMPERATURE

77<<]. (,L)O<<T

classical limit: large number of excitations are already present, perturbation

results in the evolution that leads to uncorrelated fixed point f =0 f=0  with
the characteristic time of the order of 7T

- We can neglect wo in Iy and argumentsof f. [ =2/y
- We look for solutions of the form:  J (€)= ¢(t)[1 + tanh(e / 27 )]
f(€)=¢(t)[1 - tanh(e / 2T)]

Function ¢(t) has a meaning of the correlation between two Worlds that multiplies
distribution functions
P AT ¢ =0 stable fixed point

75 - _;O(¢ - ¢3) ¢ =1 unstable fixed point

Correlated solution is unstable, fully correlated is stable

1
Pe) _(1+exp[(t—td)/tfl

1/2
]] , t! = 1w, / 8T tg = t<|In[1 — ¢(0)|



INSTABILITY AT LOW TEMPERATURE REGIME

wo>7T quantum limit: characteristic time dominated by exponentially

small number of excitations

2.0 207 -
fi
i)l ol [

1.5} 1.0

T=20,

0.5

1.0} 0.0k ——
-40 -20 0 20 40

e/T

0.5
T=0.1o
0.0 0 I

-40 -20 0 ¢T 20 40

for ‘ ‘ ;wo Lis largi Approximately:
oL t[ AN LS a) L 0] fi=ftho, D) L L f
df, 2

o (€ D\FlT Feo = r=E=—Lf,+ S
T@t_ L 2T’2T)f+—l+f(€ a)0)+1_f(e+a)0)] CZF

TE__ of_"'f_zﬁr

L, =2exp(-w,/2T)

L(x,y) =2coth(y)—tanh(x+ y)+tanh(x—y) ff = Ly

1+exp| (¢—2,)/ 12" |

] 1/2 =
forb-=h (Tremiommym) ¢ 18 =7/@ko)

L)L




INSTABILITY FOR
ELECTRON_ELECTRON INTERACTION

0 _
TFLa_‘: — _LF (%)f‘I_K(Eafaf))

of _ _
TFL 5 = —Lp (%)f‘i‘K(ﬁaf,f),
Lp(z) = 1+42%/7°

dw dw

Kef.)= [ L@ie-w)pm+ [ L@feto)m,

- dw

Ref,D)= [ L@le-wpm+ [ L@+,

It (w) = 2/ ;r—eTf(e)f(e:i:w).

| 1/2
o= (1 Fexp[(t - td>/tsl]) Lt



SPATIAL STRUCTURE OF INSTABILITY

B = phonons remain local and relax fast
1 _
or) = = [ dertenite-an) P =L (5 ) £+ [05(e — ) + B e+ o)),
O(r) = o /clﬁf(€ r)f(e+ wo,7), T%_{ — _L(%,;—;)f+ [6f(e — wo) + 0f (e +wo)] ,
06
’I]’l'a—é = —9 — I_,
00 _
777-& = _9+I+)
= U%C;'tr = — (’ﬂ;:hT)
o 9 13 Ttr wo
8t t* tcl = Tﬂ 7_—1 - Qﬁynph)\
* 8T h

Diffusion coefficient generally contains different time scale than instability time T

that coincide only for simplistic models.
In the presence of elastic scattering D becomes smaller and propagation slows

dOWD



PROPAGATION OF INSTABILITY:
COMBUSTION WAVES
845 9 2 <¢ = ¢3)
- .= =
— —V%=y(l-y) COMBUSTION WAVES (FKPP eq)

two stationary solutions: y=0 (stable) and y=1 (unstable)

Our eq. displays the instability at  ¢(r) =1 according to this scenario:

after being seeded at time t=0 d¢(r) =1—¢(r) < 1 1in a region around 0
0¢p =0 for r > R,
the instability remains localized in the area (r<Rc) for t; ~ In(1/5¢)

Then instability grows spatially forming a non-linear wave that moves
with well defined velocity vew

In 1D the solution ¢¢(z — vewt) of the front obeys

do d?¢ =
i (vcw df = 2f> = 2¢¢(1 — ¢%) Vew = 41/ D /1.

For e-ph and e-e models in the absence of electron impurity
and elastic scattering D, ~ t.vs Vew ~ VF



NUMERICAL SOLUTION FOR
DIFFERENT MODELS

dd _ o —
= — gLt -1)

dp o =
= = V0 +2(0 — 1)9,

o
=

phonon dynamics -
same order of electron
one (1.e. n=1)




CONCLUSIONS

Propagation of decoherence in many body systems introduced by
backward time evolution 1s described by the same equations as

combustion wave.

e For el-ph and el-el interactions the mathematical description of
OTOC is similar to the description of combustion waves:

& The small initial perturbation first grows exponentially
remaining local and then it starts to propagate with a constant
velocity and a well defined front.

& The velocity of the front is always slower than Fermi velocity

¢ The constant velocity of the quantum butterfly propagation
agrees with the result obtained in holographical theory of BH

J B Y

We have seen that in the model of electrons
in disorder potential there 1s no instability



