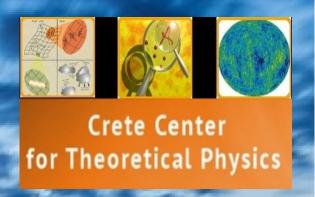


arXiv:1411.1003

arXiv:1708.08306

arXiv:1601.03384

arXiv:1708.08477



Elasticity and (pseudo)-phonons In holography

With O.Pujolas, M.Ammon, L.Alberte, A.Jimenez, (+ A.Krikun, T.Andrade, N.Poovuttikul)

Matteo Baggioli
UOC & Crete Center for Theoretical Physics

arXiv:1708.08477

Holographic transverse PHONONS

With O.Pujolas, M.Ammon, L.Alberte, A.Jimenez

MYFIRST TIME HAVING Transverse phonons

See also Daniele & Nick talks

Out of Time Talk (OTT)

 $\langle [CONCLUSIONS(t, \vec{x}), INTRO(0, \vec{x})] \rangle_{\beta}$

HOLOGRAPHIC MASSIVE GRAVITY

BREAKING
OF
TRANSLATIONS

1) Explicit

2) Spontaneous

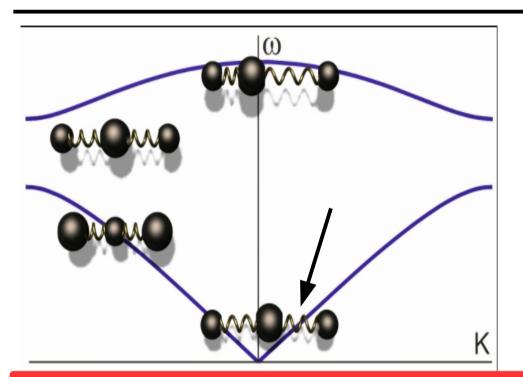
3) Both

WHERE ARE THE PHONONS ??

IS HOLOGRAPHY ELASTIC ??

WHICH ARE THE EFFECTS
ON TRANSPORT ??

Phonons as goldstone bosons



$$\lim_{k o 0} E(k) = 0.$$

$$\omega_T = c_T \, k \,, \qquad \omega_L = c_L \, k$$
 Shear sound "sound"

PHONON =

GOLDSTONE FOR TRANSLATIONAL SYMMETRY

Old school EFT

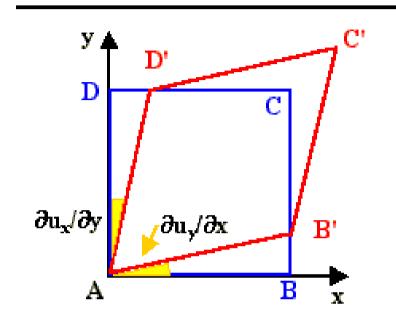
arXiv:hep-ph/9609466

$$\mathcal{L}_2 = \frac{1}{2}\rho_0 \,\dot{\xi}_a \dot{\xi}_a - \frac{1}{2}\mu \,\partial_a \xi_b \partial_a \xi_b - \frac{1}{6}(\mu + 3K)\partial_a \xi_a \partial_b \xi_b$$

Modern EFT: Sym. breaking patterns

arXiv:1501.03845

Elasticity



ELASTIC MODULI

$$\lambda \stackrel{\mathrm{def}}{=} \frac{\mathtt{stress}}{\mathtt{strain}}$$

Bulk modulus

 κ

Shear modulus

 μ

Strain tensor → Stress tensor

$$u_{ij} = \frac{1}{2} \left(\partial_i u_j + \partial_j u_i \right) \longrightarrow T_{ij} = \kappa \, \delta_{ij} \, u_{kk} + 2 \, \mu \, \left(u_{ij} - \frac{1}{3} \, \delta_{ij} \, u_{kk} \right)$$

$$c_L^2 = \frac{\kappa + \frac{4}{3}\mu}{\rho}, \qquad c_T^2 = \frac{\mu}{\rho}$$
 ELASTICITY

GOLDSTONE THEOREM $\langle G|\rho(\mathbf{r},t)|\Omega\rangle\neq 0$.

GOLDSTONE BOSON

$$\lim_{p \to 0} E(p) = 0.$$

Relativistic setups :

$$\omega = v p$$

PSEUDO - PHONONS

Now add a small **Explicit breaking**

$$\mathcal{H} \rightarrow \mathcal{H} + \mathcal{H}_{EB}$$

Example: PIONS

$$\omega^2 = \omega_0^2 + v^2 p^2 - i\omega \Gamma + \dots$$

See also Niko's and Daniele's talks

Mass gap (pinning frequency)

Damping (relaxation rate)

Both have to be small compared to the typical energy scale !!

Implications on (electric) Transport

Purely spontaneous

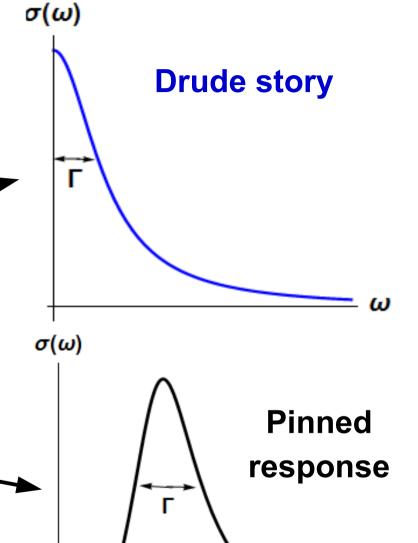
$$\sigma = \sigma_0 + \frac{\rho^2}{\chi_{PP}} \delta(\omega)$$

Purely Explicit

$$\sigma = \sigma_0 + \frac{\rho^2}{\chi_{PP}} \frac{1}{\Gamma - i\,\omega}$$

Explicit + Spontaneous

$$\sigma = \sigma_0 + \frac{\rho^2}{\chi_{PP}} \frac{-i\omega}{-i\omega (\Gamma - i\omega) + \omega_0^2}$$



 ω_0

"Solid" Massive gravity

arXiv:1411.1003

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2} \left(R + \frac{6}{l^2} \right) - m^2 V(X) \right]$$

$$X \equiv \frac{1}{2} \operatorname{tr}[\mathcal{I}^{IJ}], \qquad \mathcal{I}^{IJ} \equiv \partial_{\mu} \phi^{I} \partial^{\mu} \phi^{J}, \qquad \hat{\phi}^{I} = \delta_{i}^{I} x^{i}$$

LORENTZ VIOLATING HOLOGRAPHIC MASSIVE GRAVITY

Used a lot to implement momentum dissipation (explicit breaking of translations)

Is it just that??

VS fluid Massive gravity

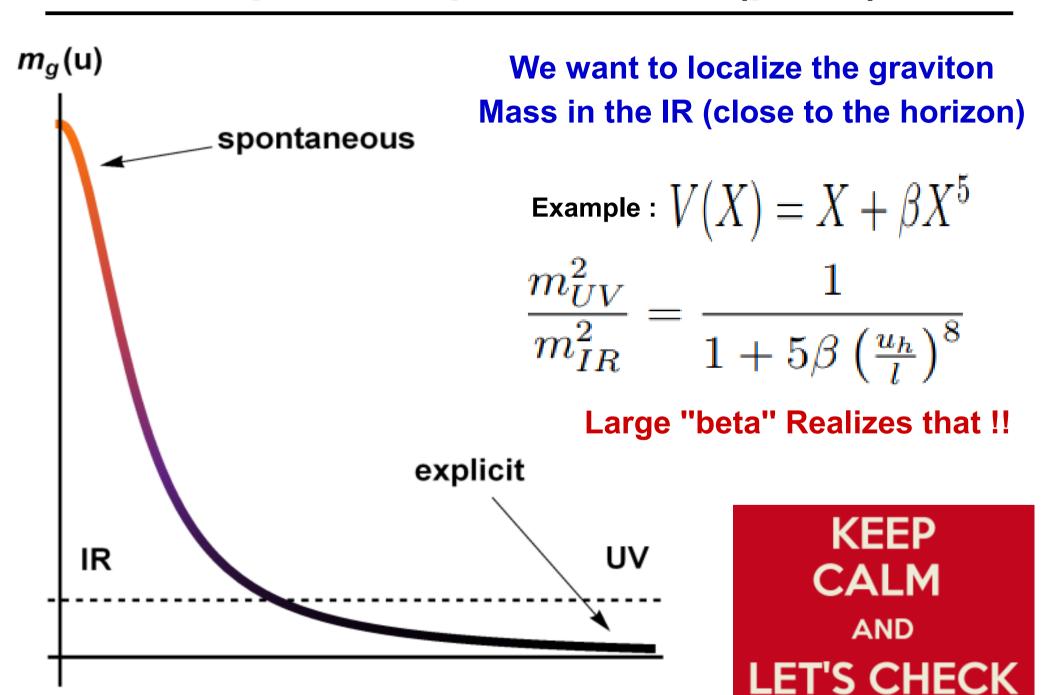
$$Z = det \left[\mathcal{I}^{IJ} \right]$$

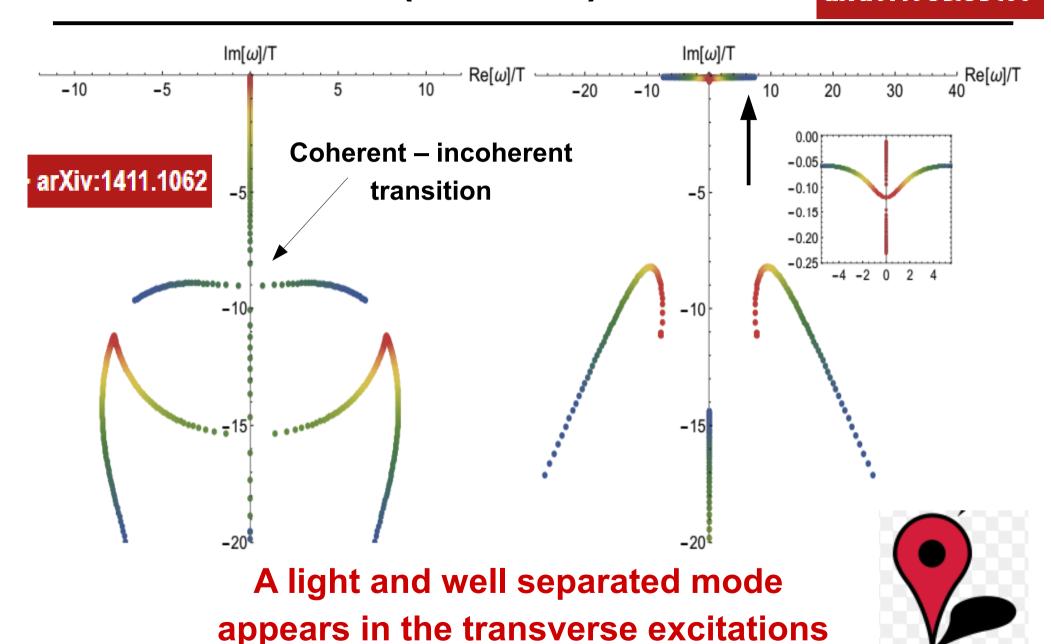
arXiv:1510.09089

Radially dependent graviton mass (gauge inv. Order parameter)

$$M^2(z) \equiv \tilde{m}^2 V_X$$

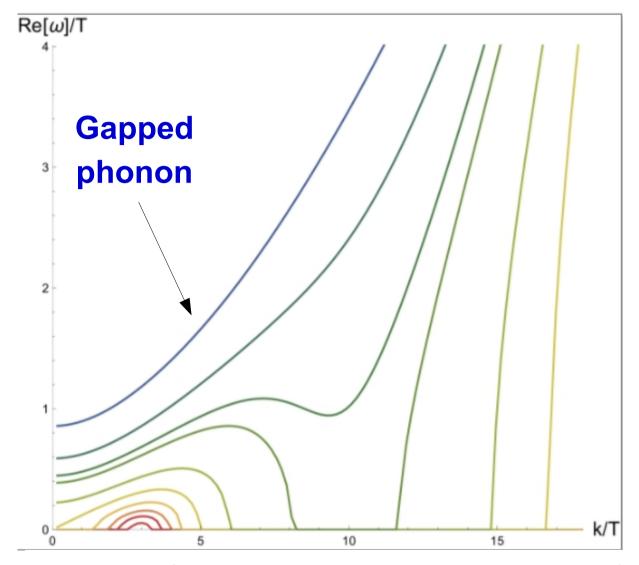
Explicit + Spontaneous (part I)





TRANSVERSE (GAPPED AND DAMPED) PHONON

The Gapped and Damped Phonon



$$\omega = \frac{1}{2} \left(-i \Gamma + \sqrt{4 w_0^2 + c_T^2 k^2 - \Gamma^2} \right)$$

At small m/T we have

$$(\text{Re}[\omega])^2 = a_1 + a_2 k^{a_3},$$

 $a_3 = 2 \pm 10^{-4}$

We can fit and get:

The mass gap $\,\omega_0$

The speed c_T^2 Of the Shear sound !!

Shear Sound and Elastic modulus

Shear elastic modulus:

$$\langle T_{ij} \rangle = \mathcal{G}_{T_{ij} T_{ij}}^R \gamma_{ij}^{(0)}$$

$$\langle T_{ij} \rangle = \mathcal{G}_{T_{ij} T_{ij}}^R \gamma_{ij}^{(0)} \quad \mu = Re \, \mathcal{G}_{T_{ij} T_{ij}}^R$$

SHEAR SOUND SPEED
$$\,c_T^2 = \frac{\mu}{\chi_{PP}}$$

arXiv:1601.03384

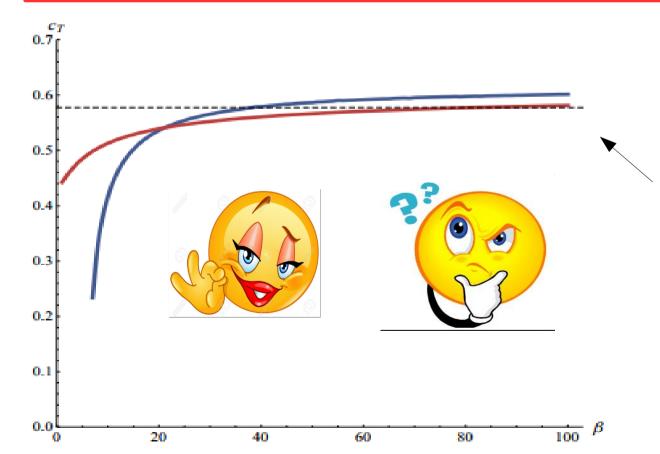
$$\chi_{PP} = T_{00} + T_{xx}$$

Good agreement (but not perfect...)

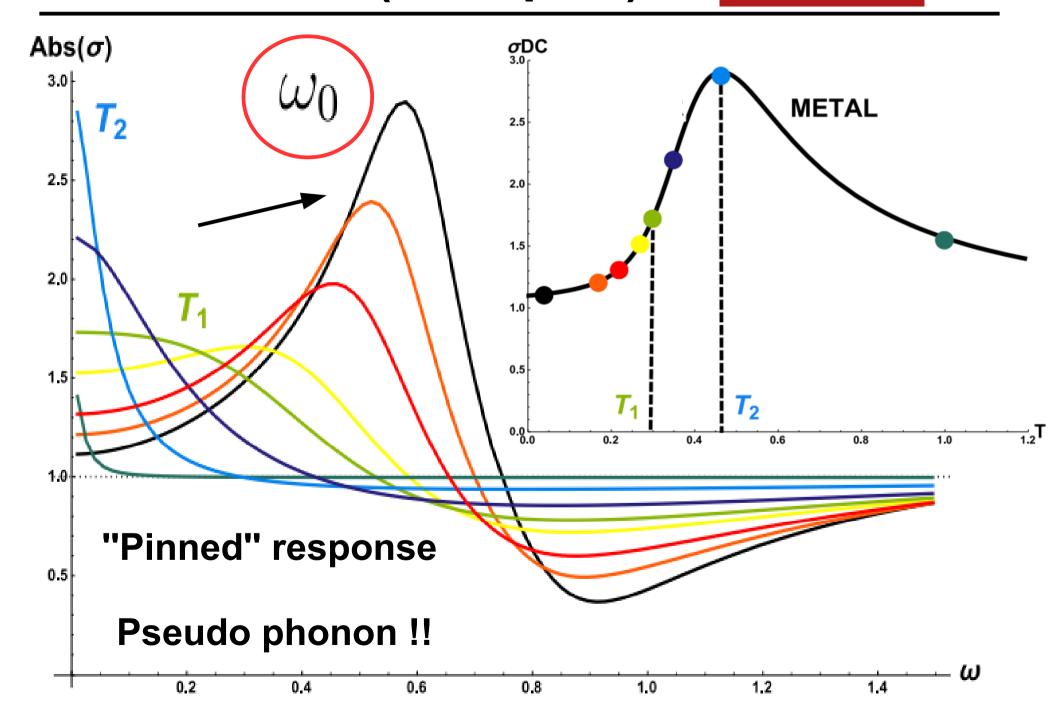
$$\approx \frac{1}{\sqrt{3}}$$

See also:

We will improve it...

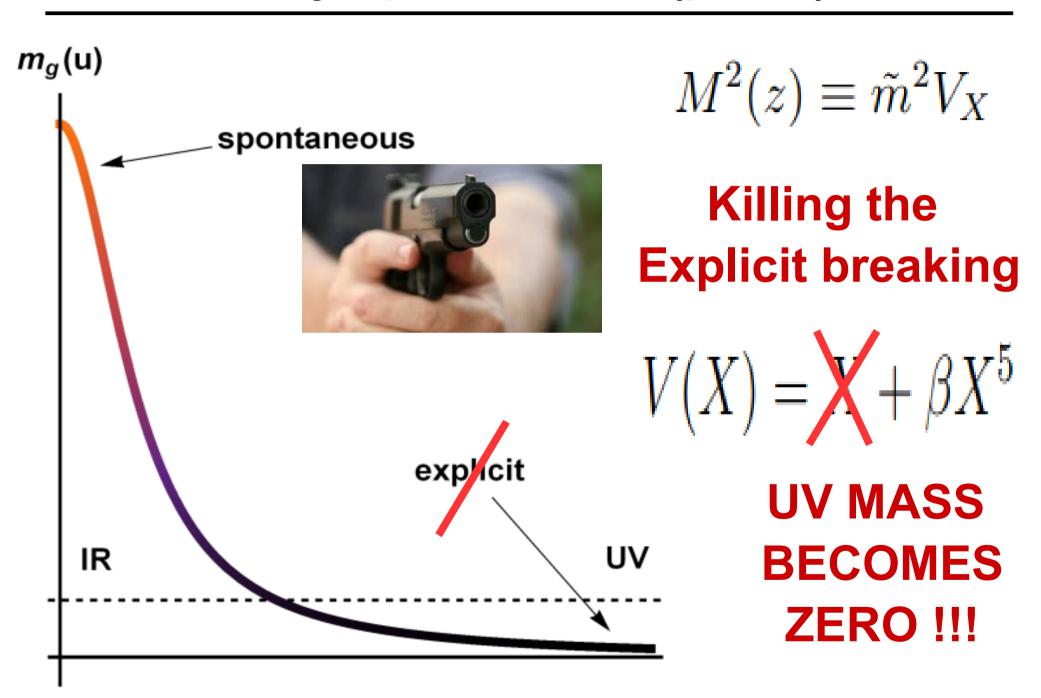


arXiv:1411.1003

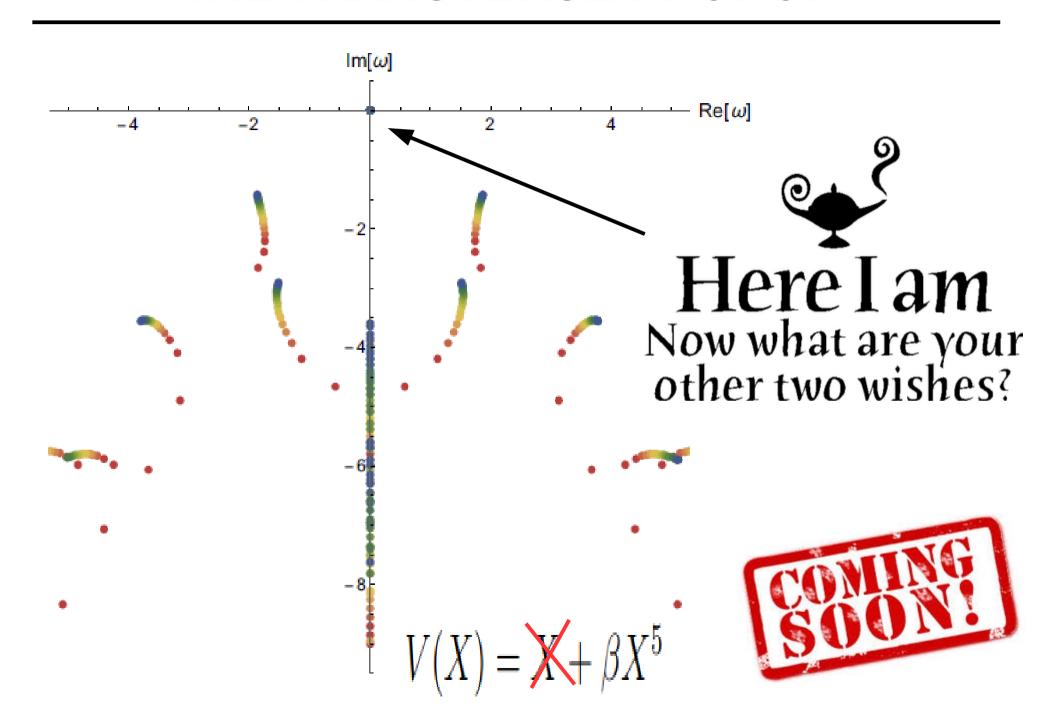


MASSLESS "TRUE" PHONON

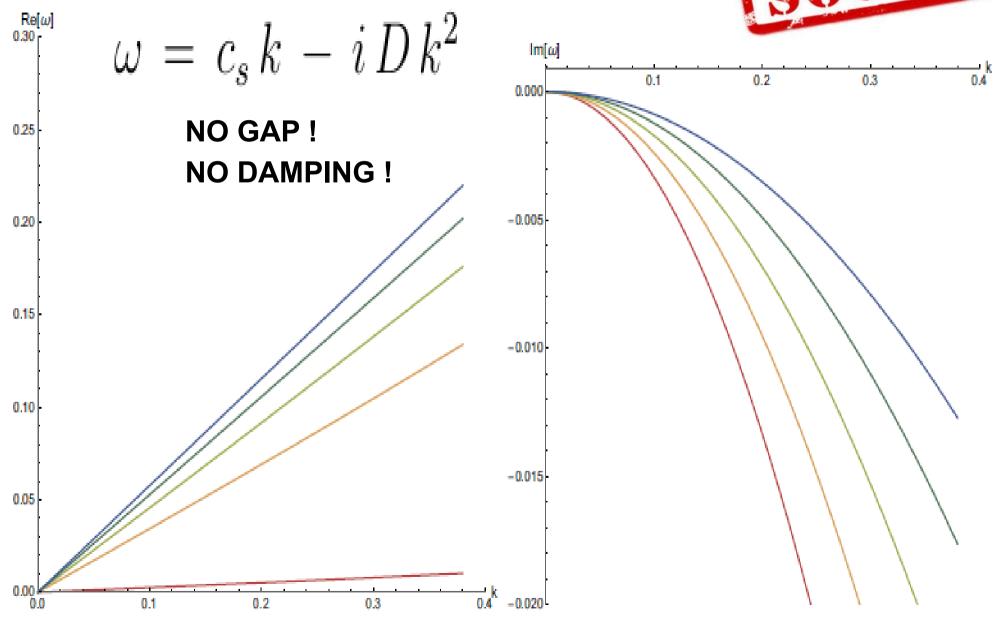
Purely Spontaneous (part II)



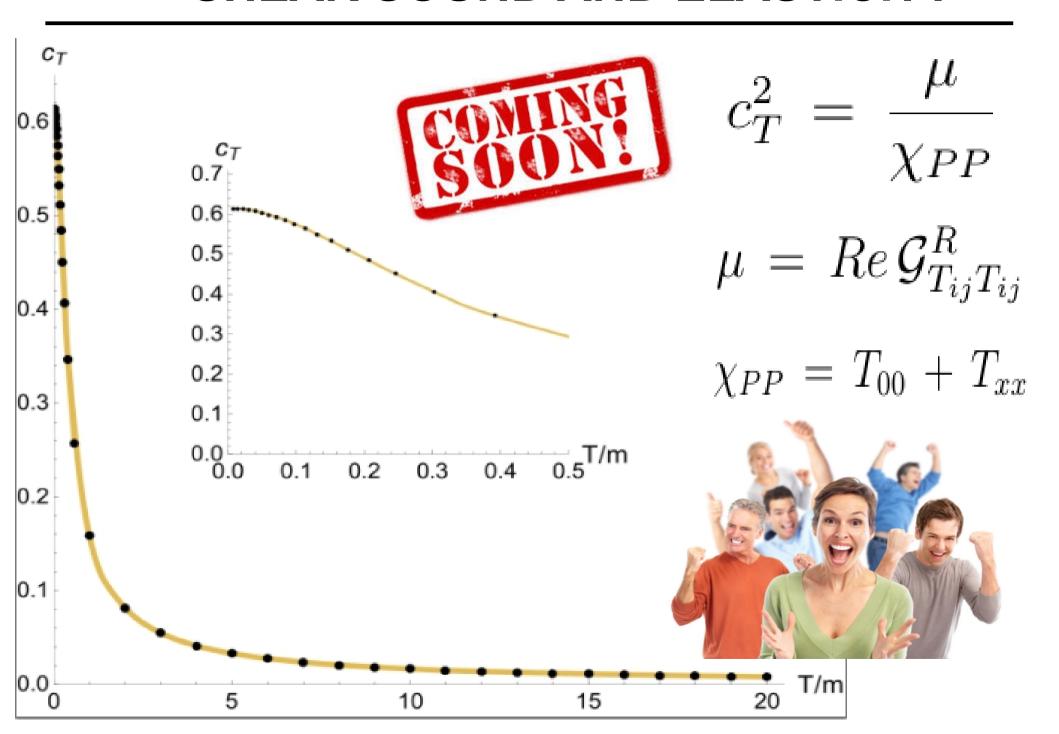
THE TRANSVERSE PHONON



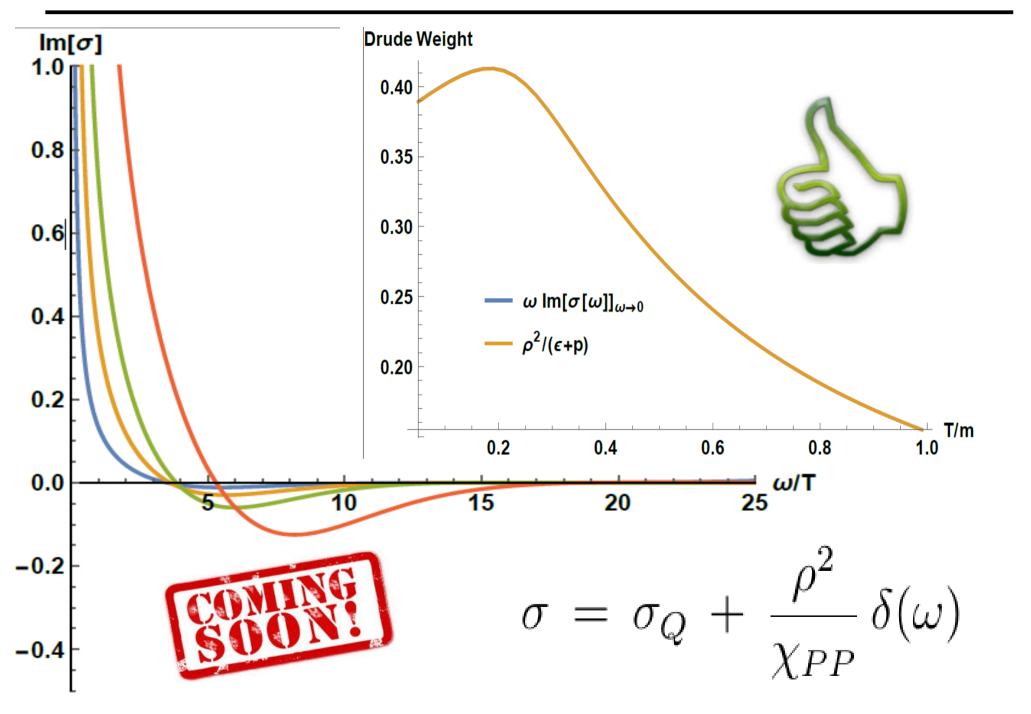
THE TRANSVERSE PHONON



SHEAR SOUND AND ELASTICITY



(ELECTRIC) TRANSPORT I



HABEMUS PHONONS

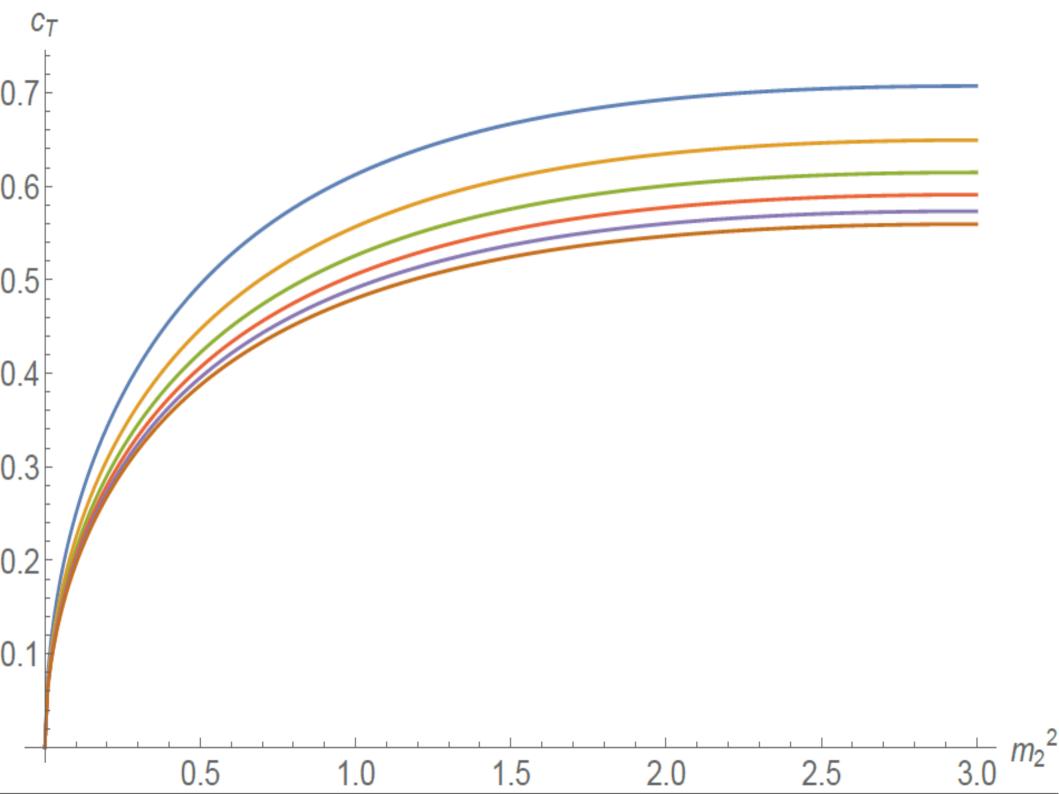
HOLOGRAPHIC SOLIDS !!!
(VISCO) ELASTIC HOLOGRAPHY

We have an holographic model which implements:

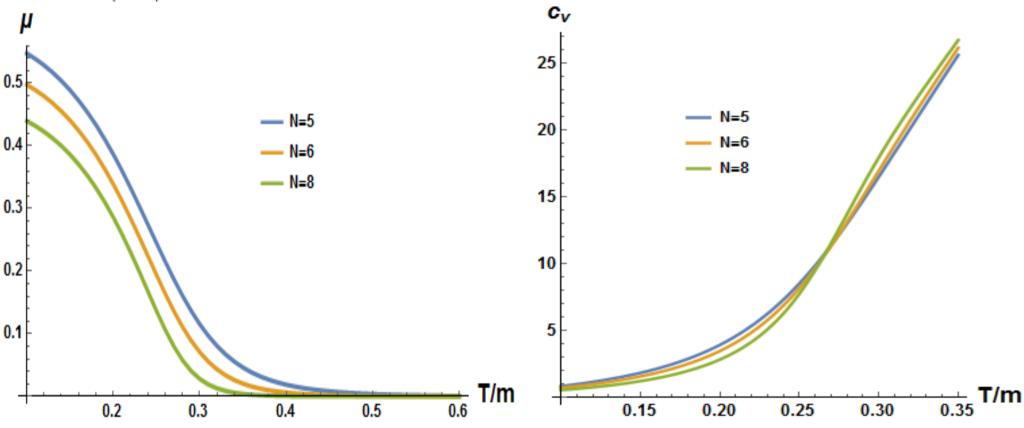
- 1) Explicit breaking of translations (momentum relaxation)
- 2) Explicit + spontaneous breaking of translations (pseudophonons)
 - 3) Spontaneous breaking of translations (phonons)

1)
$$V(X) = X$$
, 2) $V(X) = X + X^5$, 3) $V(X) = X^5$

Tark så Myrket



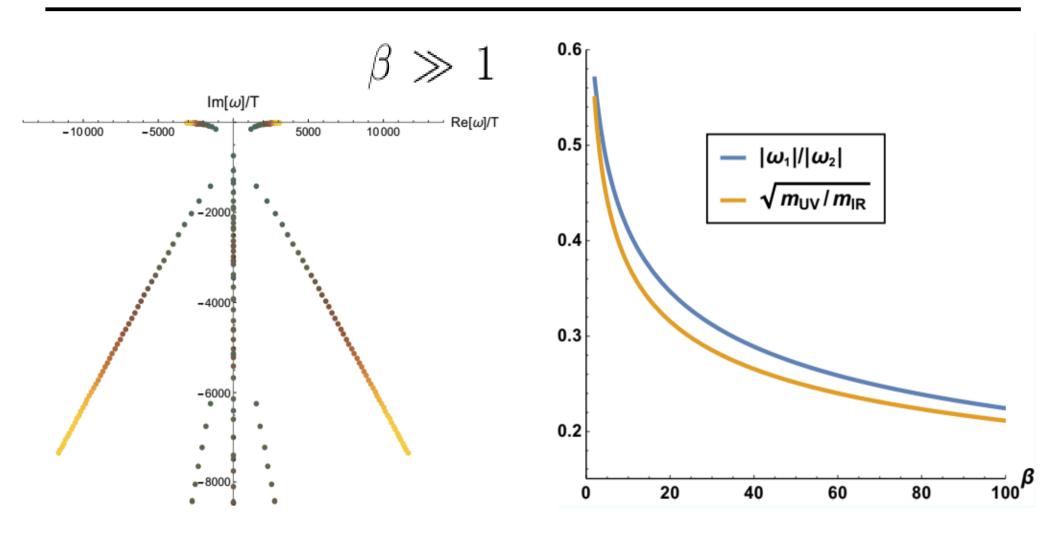
Elastic Holography



Shear elastic modulus goes to zero increasing temperature

There is no first order phase transition!
It is not melting! Glass transition?? Viscoelasticity??

Spontaneous breaking and EFT

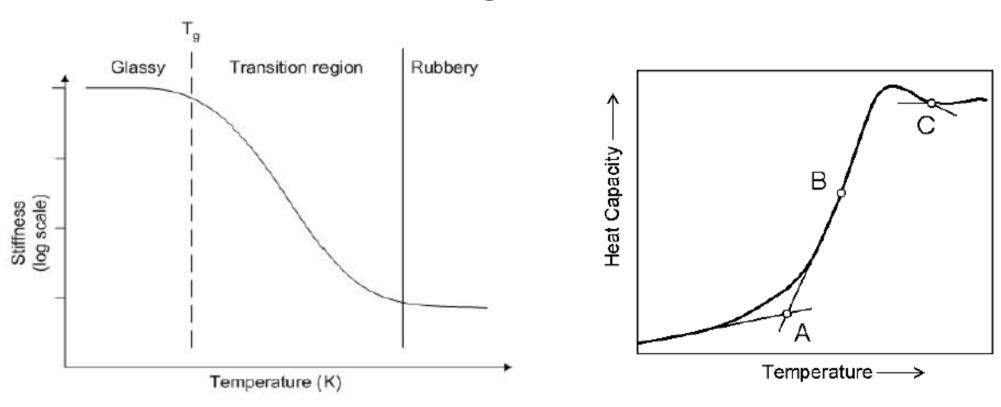


Separation of scales
Breaking mostly "spontaneous"
Small damping

Gapped and damped Transverse phonon ?????

Glassy transition ??

If it is not melting what is it ???



Also the speed of transverse phonons goes to zero with T ...

Is that a GLASS TRANSITION?

Are these VISCOELASTIC "black holes "?

Lorentz violating Massive gravity
$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2} \left(R + \frac{6}{L^2} \right) - \frac{L^2}{4} F_{\mu\nu} F^{\mu\nu} - \frac{m^2}{L^2} V(X,Z) \right]$$

$$X \equiv \frac{1}{2} \operatorname{tr}[\mathcal{I}^{IJ}], \qquad Z \equiv \det[\mathcal{I}^{IJ}], \qquad \mathcal{I}^{IJ} \equiv \partial_{\mu} \phi^{I} \partial^{\mu} \phi^{J},$$

Helicity 2 graviton mass (different from helicity 1 !!)

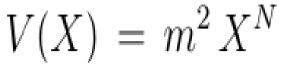
$$M^2(r) \equiv \frac{1}{2r^2} \hat{V}_X(r) .$$

FLUIDS:
$$\phi^I \mapsto \psi^I(\phi^J)$$
, $\det \left[\frac{\partial \psi^I}{\partial \phi^J} \right] = 1$.

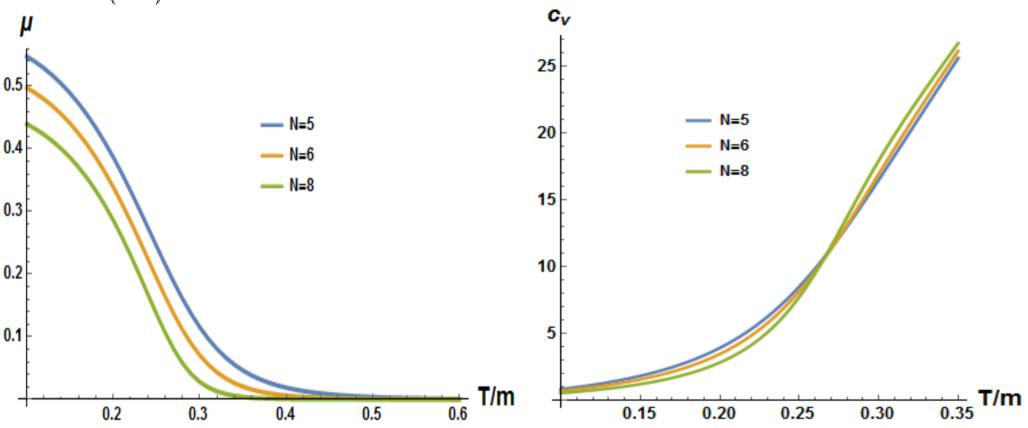
$$V_{fluids} = V(Z) \longrightarrow M^2(r) = 0.$$

$$\mu = 0$$
, $\frac{\eta}{s} = \frac{1}{4\pi}$ It's a Match!

Elastic Holography: part II



Massive gravity models with large N



Shear elastic modulus goes to zero increasing temperature

There is no first order phase transition!
It is not melting! Glass transition?? Viscoelasticity??

Viscoelasticity

ELASTIC + VISCOUS

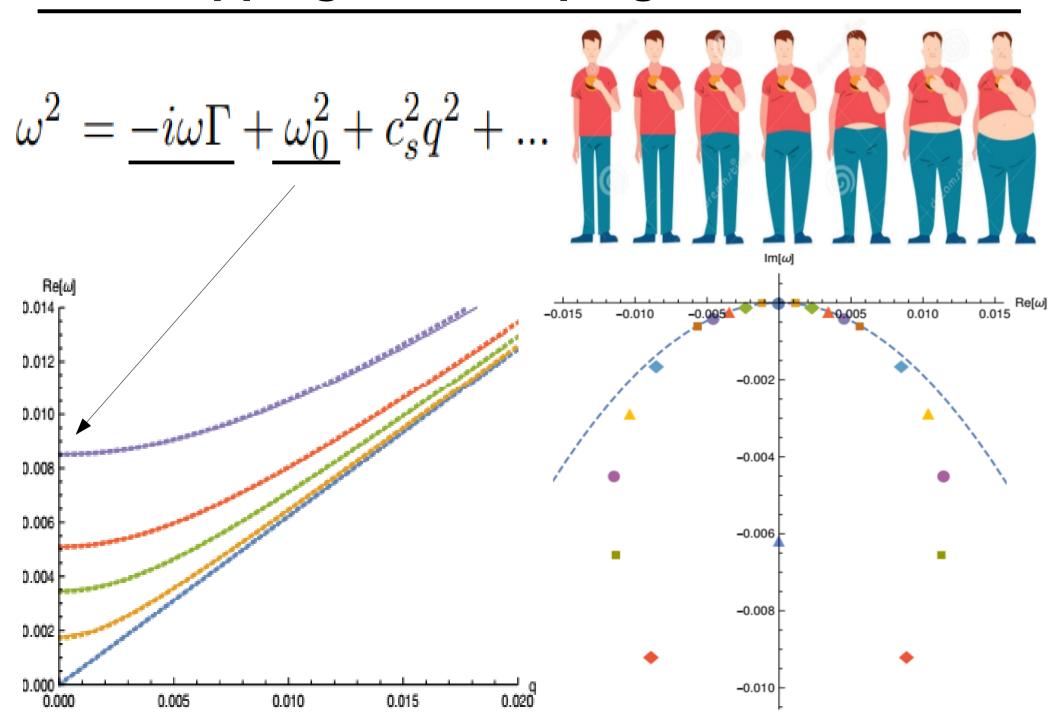
$$T_{ij}^{(T)} = \frac{1}{\mu} u_{ij}^{(T)} + \frac{1}{\eta} \dot{u}_{ij}^{(T)}$$

$$\eta \propto \lim_{\omega \to 0} \frac{1}{\omega} Im \mathcal{G}_{T_{ij}T_{ij}}^{R}$$

VISCOSITY

$$\mu \propto \lim_{\omega o 0} Re \, \mathcal{G}^R_{T_{ij}T_{ij}}$$
 Shear modulus

Gapping and Damping the Phonon



(Real World) Pinned Charge Density Wave

The dynamics of charge-density waves

G. Grüner Rev. Mod. Phys. **60**, 1129 – Published 1 October 1988

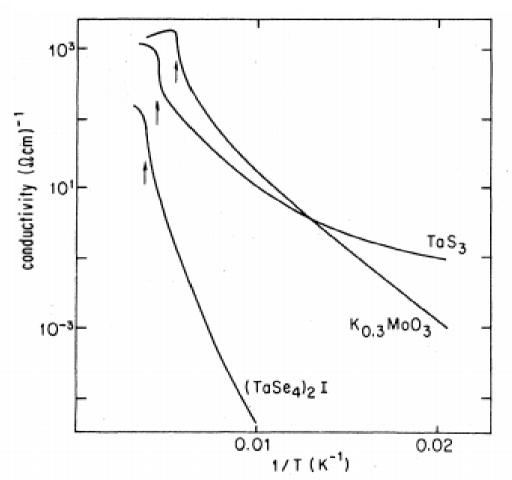


FIG. 4. Temperature dependence of the electrical conductivity in o-TaS₃, in (TaSe₄)₂I, and in K_{0.3}MoO₃. The arrows represent the Peierls transition temperatures; they are evident by examining the temperature derivatives dR/dT.

$$\sigma(\omega) = \frac{n_c e^2}{i\omega m^*} \frac{\omega^2}{\omega_0^2 - \omega^2 - i\omega/\tau}$$

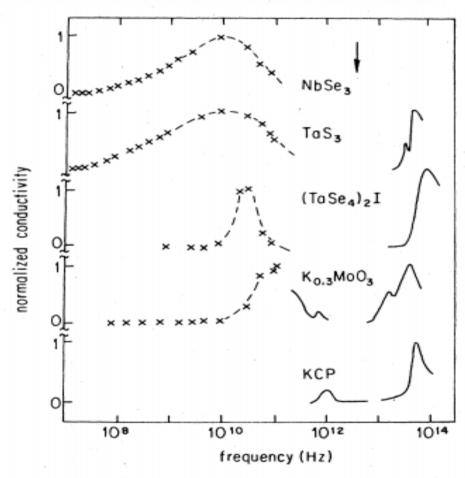
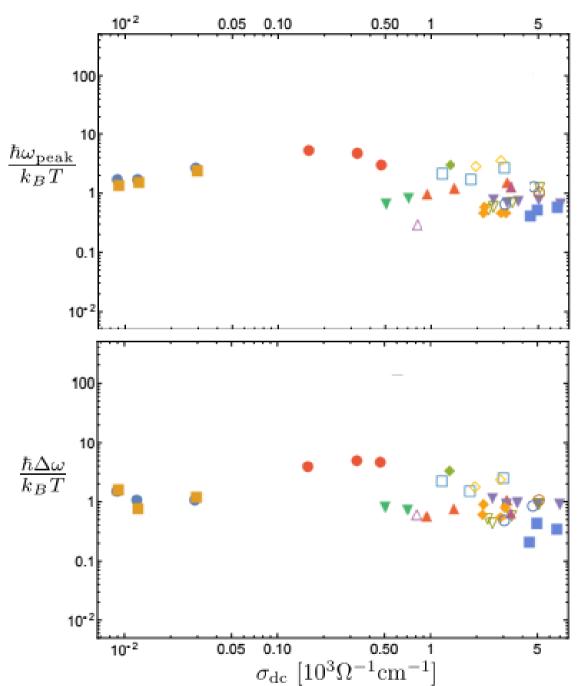


FIG. 9. The frequency-dependent conductivity of NbSe₃, o-TaS₃ and (TaSe₄)₂I, and K_{0.3}MoO₃. The solid lines represent the regions where the drop signals the single-particle gaps; the strong peaks in the millimeter wave spectral range are due to the response of the pinned collective mode.

The Bad Metal Proposal



$$\sigma(\omega) = \sigma_o + \frac{\rho^2}{\chi_{\pi\pi}} \frac{\Omega - i\omega}{(\Omega - i\omega)(\Gamma - i\omega) + \omega_o^2}.$$

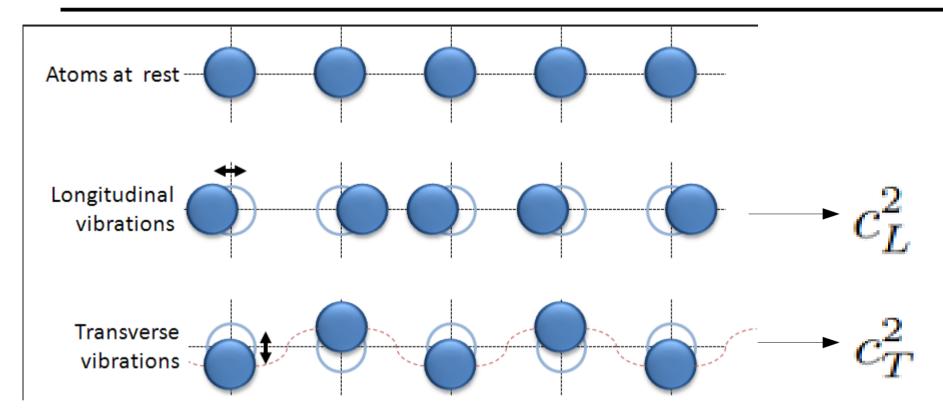
$$\hbar\omega_{\text{peak}} = \alpha(T) k_B T,$$

$$\hbar\Delta\omega = \beta(T) k_B T$$

Spontaneous + explicit
Could explain transport
In bad metals

The pinning frequency
Is controlled by the same
"universal" scale
Of the relaxation time

Solids VS Fluids



In fluids

$$\mu = 0 \rightarrow c_T = 0$$
.

NO SHEAR SOUND!

