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Today’s arXiv:

Based on recent and new work:

 1707.01505 [SC, Anthony Hoover, Li Li]

 1710.01326 [Erin Blauvelt, SC, Anthony Hoover, Li Li, Steven Waskie]



Strongly Correlated Electrons – Challenges

 Strong coupling

 Breakdown of Fermi-liquid theory, no quasiparticles

 An intrinsically complex phase diagram exhibiting a variety of orders

 Phases may compete but may also have a common origin 

and be intertwined [e.g. 1612.04385 and 1705.05390]

 Interplay between different scales in the system

 …



A Laundry List for Holography

Starting point: 

Study models that may be in same universality class as QM systems of interest

Understand:

 Breaking symmetries

 Instabilities and phase transitions

 Interplay between phases and scales

 Minimal set of ingredients to obtain specific behaviors

Can we extract any universal properties? What drives this behavior?



Example of Intertwined Orders in Holography

Talk I am not going to give today 



Pair and Charge Density Waves

 U(1) symmetry and translational invariance are broken spontaneously at the same time 

 The orders have a common origin and are intertwined

 The model can reproduce features of a PDW as well as a co-existing SC and CDW



Today instead:

Examine magnetotransport in a holographic DBI model which describes 

non-perturbative interactions for the charged degrees of freedom

Focus on behavior of Hall angle and resistivity in this model 
- Any clean scaling regimes? Can one obtain the scaling laws of the cuprates?

- So far challenging in holography

(see e.g. EMD theories)



The model 
SC, Hoover, Li 1707.01505 (backreaction) 

Low-energy dynamics 

of D-branes 

(non-linear dynamics 

between charged d.o.f.)



The model 
SC, Hoover, Li 1707.01505 (backreaction) 

Axions break translational 

symmetry in simple way

kmomentum dissipation

Low-energy dynamics 

of D-branes 

(non-linear dynamics 

between charged d.o.f.)



The model 
SC, Hoover, Li 1707.01505 (backreaction) 

Scalar couplings can support 

scaling solutions 

(and generate simple 

T-dependence)



 Conductivities can be computed using horizon method of Donos+Gauntlett

(see 1707.01505 for details)

 For generic homogenerous and isotropic metrics in the presence of a 

magnetic field, they have a highly non-trivial form

Magnetotransport
[see 1707.01505 for details]



Highly non-trivial structure

Main Features:

• Controlled by C(r) and three scalar couplings Z1, Z2, Y

• For a background with a running scalar, these are generically T-dependent
 can provide different temperature scales

• T-dependence of Hall angle will generically be different from that of DC conductivity

Physical scales k, h, T, Q 

k: momentum dissipation 



Working with Backreacted geometries
SC, Hoover, Li 1707.01505

 Metallic or insulating behavior  

working definition  

 New magnetic field driven metal-insulator crossovers

 Fully backreacted analytical (dyonic) black branes 

 …



Can we obtain the scalings of the Hall angle and resistivity of the cuprates

in some temperature range?

Can we identify clean scaling regimes?
arXiv:1710.01326 [E. Blauvelt, SC, A. Hoover, S. Waskie]



 Work in regimes in which these expressions naturally simplify 

 focus on strong momentum dissipation limit (probe DBI)

 Lessons learned in simpler cases can help build intuition for generalizations

 away from strong momentum dissipation limit

 Use geometries that are non-relativistic and hyperscaling violating in the IR 

 scaling exponents will be tunable paremeters

Can we identify clean scaling regimes?
arXiv:1710.01326 [E. Blauvelt, SC, A. Hoover, S. Waskie]



Strong Momentum Dissipation (probe DBI)

Basic Idea:  
when the momentum dissipation k is strongest scale in the system, the conductivities 

simplify greatly



Basic Idea:  
when the momentum dissipation k is strongest scale in the system, the conductivities 

simplify greatly

Q and h terms are small 

in large k regime 

(and appropriate T range)

Strong Momentum Dissipation (probe DBI)



Leading behavior: when

Basic Idea:  
when the momentum dissipation k is strongest scale in the system, the conductivities 

simplify greatly

Strong Momentum Dissipation (probe DBI)



Provided

The couplings Z1, Z2, and gxx = C control the T-dependence of the conductivities

Generically provide different temperature scales in the system (note: compare structure to EMD)

Assuming power law T-dependence for the scalar couplings, cuprates’ scalings follow when:

Condition for 

the cuprates

Strong Momentum Dissipation (probe DBI)



Explicit realization: 

non-relativistic, hyperscaling violating IR geometries



Ingredients

 Want clean scaling regime in IR of theory

 Couplings should be simple powers of T

 Natural way to achieve this is to use Lifshitz-like, hyperscaling
violating geometries 

 Well-known how to generate these in EMD theories (scalar couplings 
are simple exponentials)

 Present even in DBI theories  same structure for couplings

(with and without backreaction)



Background Geometries in strong k limit

Scaling solutions in the IR of the geometry 

Well-known Lifshitz-like, hyperscaling violating black branes 



Background Geometries in strong k limit

Scaling solutions in the IR of the geometry 

Simple form

Well-known Lifshitz-like, hyperscaling violating black branes 

Keep in mind constraints on range of z,q (NEC, no singularities, thermo etc)



Probe DBI Limit

 The strong momentum dissipation limit coincides with the probe DBI limit

 Geometries are seeded by scalar and axions only – backreaction of DBI 

interactions on the geometry can be neglected

 One must ensure that DBI stress tensor is subleading compared to remaining matter 

stress tensor

 This ultimately corresponds to a certain temperature range (see paper)



Recall we had 

Temperature Scalings

Choose simple couplings and the scalar was log-running 



Recall we had 

Temperature Scalings

Choose simple couplings and the scalar was log-running 

Strong momentum dissipation 

Scaling

behavior

provided



Anomalous Scalings of the cuprate strange metal

Scaling behavior in strong momentum dissipation limit: 

To obtain the cuprates you need to take



Anomalous Scalings of the cuprate strange metal

Scaling behavior in strong momentum dissipation limit: 

Note: Interesting special case (cuprates): Recall Hartnoll and Karch

1501.03165 

(purely QFT analysis) 

“Minimal model”

Reminiscent of dilaton coupling in string theory. Top down realization? All parameters fixed!

To obtain the cuprates you need to take



Recap:

 the Hall angle and DC conductivity generically display a different temperature 

dependence (different T scales) AND cuprate scaling laws can be obtained 

without violating NEC

 Non-trivial dynamics of D-brane action encoded by Z1, Z2 plays crucial role

 Suggests that non-perturbative interactions between charged d.o.f. may be important

 IR scaling regime

 DBI provides another example in which sDC is not simply sccs + sdiss

(two contributions are mixed in non-trivial way)



Away from strong k limit? Full backreaction

 Harder to identify specific scalings but ONLY TECHNICAL OBSTACLE, not conceptual

 Most of the ingredients that we need are still present  expect similar behavior

 BUT: analytical fully backreacted solutions are harder to find and rely on a number 

of (simplifying) relations between theory parameters

 When only a single quantity controls the T-behavior of the system, one can not 
“decouple” the various conductivities from each other  explicit example next



Illustrative case: backreacted dyonic scaling solutions

Very non-trivial

temperature

With single-exponential couplings (as before), dyonic solutions exist for 

Much uglier:



• These geometries are supported by a running scalar

• Can still identify temperature regimes in which

• Can still obtain regimes in which the resistivity is linear 

• But the Hall angle in that particular regime will typically scale like the conductivity (unless 

there is severe fine tuning)

These particular solutions are “too simple”: 

example in which only one coupling effectively survives  ~ CY   only temperature scale

Illustrative case: backreacted dyonic scaling solutions



 Only one quantity controls temperature dependence of conductivities

 Although their T-dependence is different, no clear separation between conductivity 

and Hall angle in T-ranges in which they exhibit clean scalings

 Severe fine-tuning (coefficients) is only way to achieve different scalings for this 
particular background geometry

Illustrative case: backreacted dyonic scaling solutions

Numerically this should not be an issue: 

expect to find non-trivial scaling solutions which should be controlled 
by two or more independent couplings  different temperature scales



To wrap up:

 DBI theory:  toy model providing concrete example in which the DC conductivity 
and Hall angle behave differently with T  different temperature scales in the system

 proof of principle that cuprate scalings can be obtained in some range of T 

 can provide intuition for ingredients needed and ways to generalize

 We saw clean scalings in the large k regime (probe DBI limit)

 Expect the same for the arbitrary k case (full backreaction), just harder to find 

 no conceptual obstacle (numerics)

 Hint: important to take into account non-trivial dynamics between charged degrees 

of freedom? In addition to competition between scales (already stressed).



Thank you

Come visit Lehigh!


