
Performance Engineering

Dr. Pekka Manninen
CSC - IT Center for Science
Finland

PDC Summer School 2017

Overview

Wednesday

9.15-9.30 Introduction to application performance

9.30-10.00 Application performance analysis

10.00-10.15 Coffee break

10.15-11.00 Node-level performance considerations

11.00-11.15 Break

11.15-12.00 Improving parallel scalability

12.00-13.00 Lunch break

13.00-17.00 Lab: Performance engineering

Introduction to application performance

Improving application performance

Obvious benefits

– Better throughput => more science

– Cheaper than new hardware

– Save energy, compute quota etc.

..and some non-obvious ones

– Potential cross-disciplinary research

– Deeper understanding of application

A sidenote: Four easy steps towards better
application performance

Find best-performing compilers and compiler flags

Employ tuned libraries wherever possible

Find suitable settings for environment parameters

Mind the I/O

– Do not checkpoint too often

– Do not ask for the output you do not need

Performance engineering

Adapting the problem to the underlying hardware

Key factors to application performance

– Effective algorithms, doing things in a more clever way

 e.g. O(n log(n)) vs O(n2)

– High CPU cycle utilization

– Efficient memory access

– Parallel scalability

Important to understand interactions

– Algorithm – code – compiler – libraries – hardware

– Performance is not portable

Optimize only the parts of code that are relevant for the
total execution time!

Performance analysis

Application timing

Most fundamental information: total wall clock time

– Built-in timers in the program (e.g. MPI_Wtime)

– System commands (e.g. time) or batch system statistics

Built-in timers can provide also more fine-grained
information

– Have to be inserted by hand

– Typically no information about hardware related issues

– Information about load imbalance and communication
statistics of parallel program is difficult to obtain

Performance analysis tools

Instrumentation of code

– Adding special measurement code to binary

– Normally all routines do not need to be measured

Measurement: running the instrumented binary

– Profile: sum of events over time

– Trace: sequence of events over time

Analysis

– Text based analysis reports

– Visualization

Profiling

Purpose of the profiling is to find the "hot spots" of the
program

– Usually execution time, also memory

Usually the code has to be recompiled or relinked,
sometimes also small code changes are needed

Often several profiling runs with different techiques is
needed

– Identify the hot spots with one approach, identify the
reason for poor performance

Profiling: sampling

Pros

Lightweight

does not interfere the code
execution too much

Cons

Not always accurate

Difficult to catch small
functions

Results may vary between
runs

The application execution is interrupted at constant intervals
and the program counter and call stack is examined

Profiling: tracing

Pros

Can record the program
execution accurately and
repeatably

Cons

More intrusive

Can produce prohibitely
large log files

May change the
performance behaviour of
the program

Hooks are added to function calls (or user-defined points in
program) and the required metric is recorded

Code optimization cycle

Instrument &
run

Identify
scalability

bottlenecks

Identify single-
core issues

Optimize

Validate/debug

Measure
scalability

Select test
case

Step 1: Choose a test problem

The dataset used in the analysis should

– Make sense, i.e. resemble the intended use of the code

– Be large enough for getting a good view on scalability

– Complete in a reasonable time

– For instance, with simulation codes almost a full-blown
model but run only for a few time steps

Remember that initialization/finalization stages are
usually exaggerated and exclude them in the analysis

Step 2: Measure scalability

Run the uninstrumented
code with different core
counts and see where the
parallel scaling stops

Often we look at strong
scaling

– Also weak scaling is
definitely of interest

Step 3: Instrument & run

Profile the code with
– The core count where the scalability is still ok
– The core count where the scalability has ended

and compare these side-by-side: what are the largest
differences between these profiles?

Example with CrayPAT (1/2)

Load performance tools software
module load perftools

Re-build application (keep .o files)
make clean && make

Instrument application for automatic profiling analysis
– You should get an instrumented program a.out+pat

pat_build a.out

Run the instrumented application (...+pat) to get a
sampling profile
– You should get a performance file (“<sdatafile>.xf”)

or multiple files in a directory <sdatadir>

.

Example with CrayPAT (2/2)

Generate text report and an .apa instrumentation file
pat_report <sdatafile>.xf

– Inspect the .apa file and sampling report whether
additional instrumentation is needed

Instrument application for further analysis (a.out+apa)
pat_build –O <apafile>.apa

Re-run application (...+apa)

Generate text report and visualization file (.ap2)
pat_report –o my_text_report.txt <data>

View report in text and/or with Cray Apprentice2
app2 <datafile>.ap2

Step 4: Identify scalability bottlenecks

Signature: User routines scaling but MPI time blowing up

– Issue: Not enough to compute in a domain

 Weak scaling could still continue

– Issue: Expensive collectives

– Issue: Communication increasing as a function of tasks

Signature: MPI_Sync times increasing

– Issue: Load imbalance

 Tasks not having a balanced role in communication?

 Tasks not having a balanced role in computation?

 Synchronous (single-writer) I/O or stderr I/O?

Step 5: Find single-core hotspots

Remember to focus only on user routines that consume
significant portion of the total time

Collect the key hardware utilization details, for example

– Cache & TLB metrics

– L1, L2, L3 cache metrics

Trace the math intrinsics to see if expensive operations
(exp, log, sin, cos,...) have a significant role

See the compiler output – are the hotspot loops being
optimized by the compiler?

Step 5: Find single-core hotspots

Signature: Low L1 and/or L2 cache hit ratios

– <96% for L1, <99% for L1+L2

– Issue: Bad cache utilization

Signature: Low vector instruction usage

– Issue: Non-vectorizable (hotspot) loops

Signature: Traced ”math” group featuring a significant
portion in the profile

– Issue: Expensive math operations

Profiling: do’s and don’ts

Profile your code

Do the profiling yourself

Profile the code on the hardware you are going to run it

Profile with a representative test case

Reprofile the code after optimizations

Web resources

CrayPAT documentation
http://docs.cray.com

Scalasca
http://www.scalasca.org/

Paraver
http://www.bsc.es/computer-sciences/performance-tools/paraver

Tau performance analysis utility
http://www.cs.uoregon.edu/Research/tau

Intel VTune Amplifier
https://software.intel.com/en-us/intel-vtune-amplifier-xe

Node-level performance considerations

Setting the scene

Modern multicore CPUs are very complex (with evermore
increasing complexity)

– Multiple CPU cores within one socket

– Superscalar out-of-order instruction execution with
branch prediction

– Multilevel coherent caches

– SIMD vector units

– SMT capabilities for multithreading

Typical supercomputer node contains 2-4 sockets

To get most out of the hardware, performance
engineering is needed

Memory hierarchy

Registers

L1 Cache

L2 Cache

L3 Cache

Physical memory

Remote memory (over
interconnect)

File system disks

<= 1

~4

~10

~25

O(105...6)

O(100 B)

O(100 kB)

O(1 MB)

O(10 MB)

GB’s

TB’s

100s GB’sO(103)

O(102)

SIMD instructions operate on multiple elements at one
cycle

AVX/AVX2: 256 bits:

– 4 DP values or 8 SP values

– Fused multiply-add (AVX2)

AVX512: 512 bits

– 8 DP values or 16 SP values

SIMD vectorization

double * A, * B, * C;
int i, N;

for (i=0; i<N; i++)
C[i]=B[i]+A[i];

+

+

+

=

=

=

Scalar

AVX

AVX512

OPTIMAL PORTING

Optimal porting

”Improving application performance without touching
the source code”

– Compilers & compiler flags

– Numerical libraries

– MPI rank placement

– Thread affinities

– Filesystem parameters

Potential to get significant performance improvements
with little effort

Should be revisited routinely

Effort

Theoretical peak

Pe
rf

o
rm

an
ce

Choosing a compiler

Many different choices

– GNU, PGI, Intel, Cray, XL etc.

Compatibility

– Different proprietary intrinsics

– Different rounding rules

Performance

– There is no universally fastest compiler

– Depends on the application or even input

Compiler optimization techniques

Architecture-specific tuning

– Tunes all applicable parameters to the defined
microarchitecture

Vectorization

– Exploiting the vector units of the CPU (AVX etc.)

– Improves performance in most cases

Loop transformations

– Fusing, splitting, interchanging, unrolling etc.

– Effectiveness varies

Compiler flag examples

Feature Cray Intel GNU

Listing -hlist=a -qopt-report=3 -fopt-info-vec

Balanced
Optimization

(default) -O2 -O3

Aggressive
Optimization

-O3 –hfp4 -Ofast -Ofast –
funroll-loops

Architecture
specific tuning

-h
cpu=<target>

-x<target> -march=<target>

Fast math -hfp4 -fp-model
fast=2

-ffast-math

Doesn't the compiler do everything?

You can make a big difference to code performance

– Helping the compiler spot optimisation opportunities

– Using the insight of your application

– Removing obscure (and obsolescent) “optimizations” in
older code

 Simple code is the best, until otherwise proven

This is a dark art, mostly: optimize on case-by-case basis

– First, check what the compiler is already doing

Compiler feedback/output

Cray compiler: ftn –rm … or cc/CC –hlist=m …

– Compiler generates an <source file name>.lst file that
contains annotated listing of your source code

Intel compiler: ftn/cc -qopt-report=3 -vec-report=6

– See ifort/icc --help reports

GNU compiler: ftn/cc: -fopt-info-vec

ISSUE: BAD CACHE UTILIZATION

General considerations

Always try to use all data in cache line (64 bytes)

– Memory is always read in terms of cache lines

Use regular access patterns

– Helps hardware prefetchers

Try to re-use data, so that data loaded into caches are
used multiple times

– Blocking of operations on high dimensional data

– Sorting of data before operations

Does structure-of-arrays (SoA) or array-of-structures (AoS)
fit your work best?

Loop interchange

If multi-dimensional arrays are addressed in a wrong
(non-consecutive) order, it causes a lot of cache misses
=> horrible performance

– C is row-major, Fortran column-major

– The compiler may (but also may not) re-order loops
automatically (see compiler diagnostics)

do i=1,N
do j=1,M

sum = sum + a(i,j)
end do

end do

do j=1,M
do i=1,N

sum = sum + a(i,j)
end do

end do

Loop blocking

Loop blocking = Large loops are partitioned by hand such
that the data in inner loops stays in caches

– A prime example is matrix-matrix multiply coding

Complicated optimization: optimal block size is a
machine dependent factor as there is a strong
connection to L1 and L2 cache sizes

Some compilers do loop blocking automatically

– See the compiler output

– You can assist & control with compiler pragmas/directives

Loop fission/fusion

Loop fission and fusion are optimization techniques to
improve cache efficiency by improving the locality of
reference to the variables within a loop

– Loop fission: a large loop is divided into multiple loops

– Loop fusion: multiple small loops are combined into a
large loop

When provided with sufficient information about the
loop trip counts, the compiler automatically tries to
perform loop fission/fusion based on performance
heuristics

ISSUE: LOOPS NOT VECTORIZED

General considerations

The compiler will only vectorize loops

Constant (unit) strides are best

Indirect addressing will not vectorize (efficiently)

Can vectorize across inlined functions but not if a
procedure call is not inlined

Needs to know loop tripcount (but only at runtime)

– i.e. while style loops will not vectorize

No recursion allowed

Helping the compiler

Does the non-vectorized loop have true dependencies?

– No: add the pragma/directive ivdep on top of the loop

– Or the OpenMP SIMD directive

– C/C++: the __restrict__ keyword for fixing aliasing

– Yes: Accept the situation or rewrite the loop

 Convert loop scalars to vectors

 Move if statements out of the loop

If you cannot vectorize the entire loop, consider splitting
it - so as much of the loop is vectorized as possible

Align data

– Most efficient code achieved when arrays are aligned i.e.
their starting address are multiples of SIMD width

Example

See compiler feedback on why some loops were not
vectorized

127. + 1------< for (i = 1; i < nx + 1; i++)
128. + 1 r2---< for (j = 1; j < ny + 1; j++) {
129. + 1 r2 new[i][j] = old[i][j] + a * dt *
130. 1 r2 ((old[i+1][j] - 2.0 * old[i][j] + old[i-1][j]) / dx2 +
131. 1 r2 (old[i][j+1] - 2.0 * old[i][j] + old[i][j-1]) / dy2);
132. 1 r2-->> }

CC-6290 CC: VECTOR File = ex7_heat.c, Line = 127

A loop was not vectorized because a recurrence

was

found between "old" and "new" at line 129.

CC-6308 CC: VECTOR File = ex7_heat.c, Line = 128

A loop was not vectorized because the loop

initialization would be too costly.

CC-6005 CC: SCALAR File = ex7_heat.c, Line = 128

A loop was unrolled 2 times.

Runtime: 8.55 s

Example

127. + 1-------< for (i = 1; i < nx + 1; i++)
128. 1 #pragma ivdep
129. 1 Vr2---< for (j = 1; j < ny + 1; j++) {
130. + 1 Vr2 new[i][j] = old[i][j] + a * dt *
131. 1 Vr2 ((old[i+1][j] - 2.0 * old[i][j] + old[i-1][j]) / dx2 +
132. 1 Vr2 (old[i][j+1] - 2.0 * old[i][j] + old[i][j-1]) / dy2);
133. 1 Vr2-->> }

CC-6294 CC: VECTOR File = ex7_heat.c, Line = 127

A loop was not vectorized because a better candidate was

found at line 129.

CC-6005 CC: SCALAR File = ex7_heat.c, Line = 129

A loop was unrolled 2 times.

CC-6204 CC: VECTOR File = ex7_heat.c, Line = 129

A loop was vectorized.

Tell the compiler that old and
new do not overlap

Runtime: 6.55 s

ISSUE: EXPENSIVE MATH OPERATIONS

General consideration

The cost of different scalar floating-point operations is
roughly as follows:

<= 1 cycle: +, *

~20 cycles: /, sqrt, 1/sqrt

~100-300 cycles: sin, cos, exp, log, ...

Note that there is also instruction latency and issues
related to the pipelining

Strength reduction techniques

Loop hoisting: try to get the expensive operations out of
innermost loops
– Precomputing values, look-up tables etc

Consider replacing division (a/b) with multiplication by
reciprocal (a*(1/b))

Reduce the use of sin, cos, exp, log, pow by using
identities, such as

– pow(x,2.5) = x*x*sqrt(x)

– sin(x)*cos(x) = 0.5*sin(2*x)

Use vectorized versions of the operations (through
library calls)

Summary

Do the performance analysis!

– Then you know what to look for

Utilize the compiler diagnostics

– Check especially whether the hot-spot loops have been
vectorized or not

– Then you know the reason why some optimizations have
not been applied, and you can assist the compiler to
overcome those restrictions

Utilize the CPU efficiently, especially caches and SIMD
vector units

Mind the way you implement your equations, the cost of
arithmetic operations vary greatly

Improving parallel scalability

IMPROVING LOAD BALANCE

Issue: Load imbalances

Identify the cause

– Decomposition, communication design, additional duties
(i.e. I/O)?

Unfortunately algorithmic, decomposition and data
structure revisions are needed to fix load balance issues

– Dynamic load balancing schemas

– MPMD style programming

– There may be still something we can try without code re-
design

Hybrid programming

Shared memory programming (OpenMP) inside a node,
message passing between nodes

Reduces the number of MPI tasks - less pressure for load
balance

May be doable with very little effort

– However, in many cases large portions of the code has to
be hybridized to outperform flat MPI

 In order to reach very big core counts, one needs to be ready to
start tackling this

Needs experimentation with the best threads-per-task-
ratio, care with thread affinities, etc

Rank placement

Remote access (over the interconnect) is far from
homogeneous

– Three-level network on Cray XC, islands on Infiniband etc

Rank placement does matter: place the ranks that
communicate the most onto the same node

Changing rank placement happens via environment
variables

– So easy to experiment with that it should be tested with
every application

– For example: CrayPAT is able to make suggestions for
optimal rank placement

REDUCING PARALLEL OVERHEAD

Time-consuming point-to-point communication

Use non-blocking operations and try to overlap
communication with other work

– Post MPI_Irecv calls before the MPI_Isend calls to avoid
unnecessary buffer copies and buffer overflows

Bandwidth and latency depend on the used protocol

– Eager or rendezvous

 Latency and bandwidth higher in rendezvous

– Rendezvous messages usually do not allow for overlap of
computation and communication, even when using non-
blocking communication routines

– The platform will select the protocol basing on the
message size, these limits can be adjusted

 E.g. on Cray XC MPICH_GNI_MAX_EAGER_MSG_SIZE

Issue: Expensive collectives

Reducing MPI tasks by hybridizing with OpenMP is likely
to help here as well

See if you can live with the basic version of a routine
instead of a vector version (MPI_Alltoallv etc)

– May be faster even if some tasks would be receiving
unrefenced data

In case of very sparse Alltoallv’s, point-to-point or one-
sided communication may outperform the collective
operation

Issue: Expensive collectives

Use non-blocking collectives (MPI_Ialltoall,...)

– Allow for overlapping collectives with other operations,
e.g. computation, I/O or other
communication

– May be faster
than the blocking
corresponds even without
the overlap

– Replacement is trivial

See the documentation of your MPI library for tunable
parameters, and test the impact of them

– E.g. on Cray XC: increase the value of
MPICH_ALLTOALL_SHORT_MSG

ADDRESSING I/O BOTTLENECKS

General considerations

Parallelize your I/O !

– MPI I/O, I/O libraries (HDF5, NetCDF), hand-written
schemas,...

– Without parallelization, I/O will be a scalability bottleneck
in every application

Try to hide I/O (asynchronous I/O)

Compute I/O Compute I/O Compute I/O Compute I/O

Compute

I/O

Compute

I/O

Compute

I/O

Compute

I/O

Lustre file striping

Striping pattern of a file/directory can queried or set
with the lfs command

lfs getstripe <dir|file>

lfs setstripe –c count dir

– Set the default stripe count for directory dir to count

– All the new files within the directory will have the
specified striping

– Also stripe size can be specified, see man lfs for details

Proper striping can enhance I/O performance a lot

Filesystem parameters

Writing a single file on a Cray XC40 (4 PB DDN Lustre, 141 OSTs)

Summary

Find the optimal decomposition & rank placement

– Load balance is established at algorithmic and data
structure level

Use non-blocking communication operations for p2p and
collective communication both

Hybridize (mix MPI+OpenMP) the code to improve load
balance and alleviate bottleneck collectives

All large-scale file I/O needs to be parallelized

– I/O performance is sensitive to the platform setup

– Dedicated I/O ranks needed even for simple I/O

Wrap-up

Performance engineering: take-home messages

Mind the application performance: it is for the benefit of
you, other users and the service provider

Remember the four easy steps to good application
performance

– Find the compiler and its compiler flags that yield the best
performance

– Employ tuned libraries wherever possible

– Find good settings for environment parameters

– Mind the I/O

Performance engineering: take-home messages

Profile the code and identify the performance issues
first, before optimizing anything

– “Premature code optimization is the root of all evil”

Quite often algorithmic or intrusive design changes are
needed to improve parallel scalability

– To utilize cutting-edge supercomputers, one must be
ready to start tackling these

Serial optimization is mostly about helping the compiler
to optimize for the target CPU

– Good cache utilization crucial for performance, together
with vectorization

Don’t stop here

Try to apply this stuff once back in office

See further training offerings by SNIC/PDC

CSC Finland hosts PRACE Advanced Training Center that
runs an exhaustive set of HPC courses

See HPC training opportunities elsewhere in Europe
www.training.prace-ri.eu

