
Future Programming Models

How to Program a QPU
S. Markidis, I.B. Peng, S. Rivas-Gomez and E. Laure (KTH)

Most of the material from this lecture is courtesy of: https://medium.com/@decodoku/how-to-program-a-quantum-computer-982a9329ed02

QPU = Quantum Processing Units

• QPUs are devices that implement the principles
of quantum computing

• Many different technologies
demonstrated

• Sequences of operations demonstrated
• Early stage vendors are offering QPU access

• D-Wave, IBM, Google, Rigetti
• Client-server or host/device interaction

model
• Loose integration with modern

computing

2

Courtesy of https://www.dwavesys.com/, http://rigetti.com,
https://researchweb.watson.ibm.com/ibm-q/

Why QPU?

Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it
quantum mechanical.

Can a quantum system can be simulated exactly by a universal computer? NO!

Richard Feynman, Simulating Physics with Computers

3

Timeline of Quantum Computers
• Early 90s - quantum computing was codified to exploit capabilities of quantum

physics:
• Use ‘’inherent parallelism’’ of quantum systems
• Exponential speed ups over selected classical algorithms, i.e. factorization

• For 20 years - quantum technologies remain proof of concept
• R&D with significant basic research investments
• Left with a large, diverse quantum technology base

• In the 2010s - research and development began to address system-level concerns
• Microarchitecture
• Programming
• Macro-architecture

4

Quantum Computers are Hybrid Systems

Quantum computers will be always hybrid
devices, partly quantum (QPU) and partly classical
(Host).

The classical host is required to handle inputs and
outputs.

The quantum device is used to accelerate
computations

Question: what does this remind you of?

5

Classical
Host

QPU

Basic Programming Approach

6

Compilation Circuit Generation Circuit Execution

host host QPU

Classical/quantum
Algorithm

High-Level IR Quantum Circuit IR

IR = Intermediate
Representation

Post Processing

exit

host

Python QASM

We will express our algorithms as a combination of
circuit gates and classical control instructions

Python

shots

The IBM Quantum Information Software Kit
We will use the IBM Quantum
Information Software Kit (qiskit) that
is a Python development kit to create
quantum programs, compile and run
them on an online quantum computer
called IBM Q.
Python code used for:
• Classical I/O
• Create quantum circuit
• Compile the code
• Execute it on a remote IBM quantum

computer or on local emulator.

7

Requirements for running your Quantum Program

You will need:
• Python3
• Jupyter notebook (best to install Anaconda that includes it)

Get the qiskit with:
• git clone https://github.com/QISKit/qiskit-sdk-py

Create an IBM Quantum Experience account to connect and use the IBM Q
quantum computer
• you will have 5 credits for free

8

For detailed info, check https://github.com/QISKit/qiskit-sdk-py

IBM Q itself

9

https://www.youtube.com/watch?v=CuC-9e8hfi0

Quantum Program: Battleships Game
Game between 2 human players:

• Decide where to place the ships
• Decide where to bomb

Use a Japanese variant of Battleships game:

• all ships take up only a single square, but some take more hits to
sink than others. The first ship can be sunk by a single bomb, the
second needs two and the third needs three.

• The state 0 = fully intact ship, and 1 = ship that has been
destroyed. Some boat might be partially damage and needs more
bombs to be sunk.

10

Battleships game with 5 bit
We will use a 5 bit quantum computer (IBM Q):

• Each player choose where to put three ships. Five
possible positions are available, corresponding to the
five bits on IBM’s ibmqx2 chip.

• The first ship from input requires 1 bomb to be sunk,
second one 2 bombs and third 3 bombs.

• Where we have ship we can initialize as state 0, and
then apply a NOT when it gets hit. When we find it in
state 1, we’ll know it has been destroyed.

We will learn how to use quantum computer to
represent the partially damaged ships.

11

Question: Why do we
display the grid like this?

Quantum Computer: qubit instead of bit
In order to implement our game we will need to use the
quantum equivalent of bit, called quantum bits or qubits,
and use quantum gates.

Like normal bit, qubit have also two possible values which
can call 0 and 1. But the laws of quantum mechanics also
allow other possibility, which we call superposition of
states.

12

The superposition of different states

13

Quantum Bit - Qubit

We can picture a qubit as a sphere of radius
1 with 0 and 1 sitting on opposite poles. The
superposition states are all the other
possible points on the surface.

Superposition states are values that exist
part way between the extreme of 0 and 1.

14

0

1

Qubit state

Quantum Variables: part continuous, part discrete variables

Qubits seem like a continuous variable:
they can be any point of a sphere.

However, we can never extract more than a
binary information from a qubit:
• we can’t ask for the exact details of the

superposition state, we only force it
choose between 0 and 1.

Qubit is a quantum variable as it has
property of continuous and discrete ones

15

Measuring a Qubit
Any measurement is simply us asking a qubit
to choose between two opposite 0 and 1.

If the qubit is in the state 0, it will go for 0 in
the measurements. A qubit in state 1,
similarly will give the result 1.

For any other state, the outcome will be
random with the closest option being the
most likely.

Question: how do I get to know the unknown
state?

16

0

1

0
measurement

0

1

1

measurement

0

1

??
measurement

Make several experiments and measure

it is possible to determine an unknown
state with arbitrary precision if an
ensemble of N identically prepared
copies of the unknown quantum
state is available.

If we perform a measurement on each
of the N independent copies, we obtain
a sequence of N independent
measurement results giving us
probability distributions.

For large N, the relative frequency
approaches the expectation value

17

0

1

1
measurement

0

1

1
measurement

0

1

0
measurement

…
In our code, we will set
the number of
measurements
(shots)

Question: what will be the measurement of this state?

On the equator, it is a 50/50 chance either way.

If we do a large number of measurements:
• 50% will be 0
• 50% will be 1

18

0

1

A simple formula to calculate the probability of the two states is:

• Prob(0) = cos2(θ/2)= cos2(π/4)= 0.5
• Prob(1) = sin2(θ/2)= sin2(π/4)= 0.5

θ = π/2

19

Question: what will be the measurement of this state?

If we do a large number of measurements:

• cos2(θ/2)= cos2(π/8)= 0.853 will be 0
• 1 – 0.853 = .147 will be 1

0

1

θ = π/4

20

Question: what will be the measurement of this state?

So if we do a large number of measurements:

• cos2(π/6)= 0.75 will 0

• 1 – 0.75 = 0.25 will be 1

Remember this result: we will use it later!

0

1

θ = π/3

2121

Question: what will be the measurement of this state?

So if we do a large number of measurements:

• X % will be 0
• X % will be 1

0

1
θ = π

22

Question: what will be the measurement of this state?

So if we do a large number of measurements:

• 25 % will be 0
• 75 % will be 1

0

1
θ = 2π/3

Initialize qubit for a ship
To simulate this on a quantum computer,
we can use a qubit for storing the
information of a ship that is being
bombed.

With QASM, we can define a single qubit
in a register called q. We refer to this
qubit in code as q[0].

Since outputs have to be in nice, human-
readable normal information, we also
define a single normal bit in a register
called c.

23

OPENQASM 2.0;
include "qelib1.inc";
\\ quantum register is initialized to 0 pure state
\\ Initialize a register with a single qubit
qreg q[1];
\\ Initialize a register with a normal bit
creg c[1];

measure q[0] -> c[0]; \\ measure the qubit

QASM code for initialization

Measuring qubit
The last line of our QASM file is
measure q[0] -> c[0];
In this we measure the qubit. We
tell q[0] that it has to decide what to
be: 0 or 1. The value of c[0] is then
the output of this computation.
The qubit q[0] is automatically
initialized in the state 0.

24

OPENQASM 2.0;
include "qelib1.inc";
\\ quantum register is initialized to 0 pure state
\\ Initialize a register with a single qubit
qreg q[1];
\\ Initialize a register with a normal bit
creg c[1];

measure q[0] -> c[0]; \\ measure the qubit

QASM code for initialization

Question: what is it the result of the measure?

Question: does the measure give always the same measure?

NOT to destroy a battleship
A battle ship destroyed by a single hit will be pretty easy to simulate.
We can initialize it in state 0, and then apply a NOT when it gets hit.
When we find it in state 1, we’ll know it has been destroyed.

So for our game, we want to take q[0] = 0, a fully intact ship, and
perform a NOT, a fully destroyed ship.

We will implement a NOT using a QASM u3 gate

u3(pi,0,0) q[0];

25

u3 gate
But u3 is an operation with three
arguments that are the angles expressed
in radians.

The first argument is the angle by which
we are going to turn the sphere of our
qubit around.
• The angle pi corresponds to 180°,

and so means we turn the sphere
completely upside down. 0 moves
to 1 and 1 moves to 0, which is why
this operation acts as a NOT.

26

0

1

0
measurement

0

1

1

measurement

u3(pi,0,0)

Question: how can we do ½ NOT?

To do half a NOT we could simply use half this angle:

u3(0.5*pi,0,0)

Also, we have yet another way to perform a NOT on
our qubit: We could do half a NOT twice:

u3(0.5*pi,0,0) q[0];
u3(0.5*pi,0,0) q[0];

We could also do a third of a not thrice, or a quarter of
a NOT …

27

0

1

0

1

?

Question: what will be the result of a single measurement of 1/2 NOT of ?

Our first Quantum Program
Implement and run our first quantum program
to:

• Initialize classical and quantum registers
• Create a Quantum Circuit to perform 1/3

NOT operation
• Measure and store result in classical register

We will then compile it and execute it.

28

0

1

θ = π/3

0. Loading modules for Quantum Program

29

Checking the version of PYTHON; we only support 3 at the moment
import sys
if sys.version_info < (3,0):

raise Exception('Please use Python version 3 or greater.')
Import the QuantumProgram and our configuration
sys.path.append('../../qiskit-sdk-py/')
import math
from pprint import pprint
from qiskit import QuantumProgram
import Qconfig

1. Create Quantum Circuit
instantiate Quantum program

qp = QuantumProgram()

quantum register for the first circuit
q1 = qp.create_quantum_register('q1', 1)
c1 = qp.create_classical_register('c1', 1)
qc1 = qp.create_circuit('OneThirdNOT', [q1], [c1])
qc1.u3(3.1415/3,0,0,q1[0])
qc1.measure(q1[0], c1[0])

30

2. Check the generated QASM

print(qp.get_qasm('OneThirdNOT'))

31

Output:
OPENQASM 2.0;

include "qelib1.inc";

qreg q1[1];

creg c1[1];
u3(1.047166666666667,0.000000000000000,0.000000000000000) q1[0];

measure q1[0] -> c1[0];

This is somehow similar to –s flag to produce
assembly code during classical compilation

3. Compile the Quantum Code

qobj = qp.compile(['OneThirdNOT'], backend='local_qasm_simulator')

32

There are different backend we can use:

• ibxm2, real quantum computer with 5 qubits
• ibxm3, real quantum computer with 16 qubits
• local_qasm_simulator, qskit simulator coming when you install

software on your computer

4. Execute the Code
result = qp.execute(['OneThirdNOT'],
backend='local_qasm_simulator', shots=1024)

33

When we execute the code, we need to set-up the number of measurements
(=shots). Higher number of measurements leads to higher measurement
precision.

5. Retrieve the result
result.get_counts('OneThirdNOT')

34

Output:
{'0': 787, '1': 237}

Question 1: What does this mean?

We performed 1024 experiments:
• 787 were 0 à 787/1024 = 0.7685
• 237 were 1 à 237/1024 = 0.2314

Question 2: Is what we expected?

Question3: How can we improve the
solutions?

6. Improve estimate increasing the number of measurements

result = qp.execute(… , shots=1000)
result.get_counts('OneThirdNOT')
{'0': 770, '1': 230}

result = qp.execute(… , shots=10000)
result.get_counts('OneThirdNOT')
{'0': 7480, '1': 2520}

result = qp.execute(… , shots=100000)
result.get_counts('OneThirdNOT')
{'0': 75014, '1': 24986}

result = qp.execute(… , shots=1000000)
result.get_counts('OneThirdNOT')
{'0': 749507, '1': 250493}

35

Question: which numerical technique
looks like this quantum computation?
Hint: we implemented it in the lab!

Question 2: how does measurement
precision scale? 1/N1/2

All I/O handled by host:
• Input ship position
• Print the results

All control of execution is done by host:
• Check if a position that is bombed by player has battleship and how much is damaged:

• If boat #1 then create quantum circuit for NOT
• If boat #2 then create quantum circuit for ½ NOT
• If boat #3 then create quantum circuit for 1/3 NOT

• Check if all the ships of one player are sunk are sunk and finish the game

Host offloads computation to QPU, depending on we need NOT, 1/2 NOT or 1/3 NOT:
• Load to input to quantum register, compute u3(pi,0,0), store result to classical register
• Load to input to quantum register, compute u3(pi/2,0,0), store result to classical register
• Load to input to quantum register, compute u3(pi/3,0,0), store result to classical register

36

General strategy for implementing Battleships Game

37

Player 1: input 3 ship positions (order matters)
Player 2: input 3 ship positions (order matters)

Player : input position to bomb
W

hi
le

 o
ne

 p
la

ye
r h

as
 s

un
k

al
l t

he
 s

hi
ps

Fo
r e

ac
h

pl
ay

er
If enemy ship in this position

Create quantum circuit to:
• Load data to quantum registers
• perform NOT, ½ NOT or 1/3 NOT depending on the ship
• Store result in classical registers

Compile and execute measurements of the result of quantum circuit QPU

Output if there was a ship there and if yes the level of damage (0 - 1)

no

yes

Check if all the ships of one player are sunk

Code description and availability

A great description of the code by the
developer of the code, Dr. James Wooton, is
available at:

https://medium.com/@decodoku/how-to-
program-a-quantum-computer-982a9329ed02

The code is also available:

https://github.com/decodoku/qiskit-sdk-
py/tree/master/tutorial/sections

38

39

Demo: Battleships
game on the IBM Q
quantum computer

Player 1:
0, 1, 2

Player 2:
3, 4, 0

Challenges for programming model developers
Lack of Quantum Computer Applications:

• IBM Quantum provides an initial good spectrum of applications to derive
programming models requirements

• QPU ≅ GPU in some aspects, can we learn something from programming
models for GPU?

A this early, difficult to understand implication of intrinsic randomness of QPU:

• Also classical bits have noise because they are just electrical signal …
• Not clear if randomness should emerge to programming system level and how

it should be codified (different data types with different precision??)

40

Limitations
This was an introductory lecture on QPU.

We focus on understanding the concept of qubit and superposition
and use it to implement very simple applications.

There are many important topics, like entanglement, that we didn’t
have time to cover but there are more example on how to program
QPU to use advanced features of QPUs.

41

Conclusions
Small QPUs are accessible to everybody, but software stack and
programming models are still in their infancy.
Lot of current HPC programming approaches match QPU programming
and will necessarily impact it:

• CUDA/OpenCL for offloading to QPU
• Reconfigurable hardware (FPGA) programming
• …

We are just at the beginning of the programming models for QPU, any
work we done on this will drive their evolution!

42

Thank you!
Hmmm no, we don’t have a DD2361
Applied QPU programming course at KTH

… at least not yet J

43

