
S. Markidis, I.B. Peng, S. Rivas-Gomez
KTH Royal Institute of Technology

CUDA – From Loops to Grids

Motivational Example: dist_v1
Compute an array of distances from a reference point to
each of N points uniformly spaced along a line segment.

In large applications, there is always one or more functions
that take most of the execution time à candidate for running
on GPU

Take the calculate distance function as the expensive
function in your large application. No need to port all your
application to GPU!

2

#include <math.h> //Include standard math library containing sqrt.
#define N 64 // Specify a constant value for array length.

// A scaling function to convert integers 0,1,...,N-1 to evenly spaced floats float
scale(int i, int n)
{

return ((float)i) / (n - 1);
}

// Compute the distance between 2 points on a line.
float distance(float x1, float x2)
{

return sqrt((x2 - x1)*(x2 - x1));
}
// main function
int main()
{

float out[N] = {0.0};
// Choose a reference value from which distances are measured.
const float ref = 0.5;

for (int i = 0; i < N; ++i)
{

float x = scale(i, N);
out[i] = distance(x, ref);

}
return 0;

}

3

dist_v1 has a
single loop that
scales the loop index
to create an input
location and the
computes/stores the
distance from the
reference location

1. Create the CUDA source file

• Create the file kernel.cu
where you will have CUDA
source code à cuda codes
have extension .cu

• Copy and paste the content of
main.cpp into kernel.cu

4

#include <math.h>
#define N 64

float scale(int i, int n)
{
return ((float)i) / (n - 1);

}

float distance(float x1, float x2)
{
return sqrt((x2 - x1)*(x2 - x1));

}

int main()
{

float out[N] = {0.0};
const float ref = 0.5;
for (int i = 0; i < N; ++i)
{

float x = scale(i, N);
out[i] = distance(x, ref);

}
return 0;

}

Question: Is this a CUDA code?

2.1 Modify kernel.cu

• Delete #include <math.h>
because CUDA internal files already
include math.h, and insert
<stdio.h> to enable printing the
output

• Add #define TPB 32, to indicate
the number of threads per block
that will be used in your kernel launch

5

#include <math.h>
#include <stdio.h>
#define N 64
#define TPB 32

float scale(int i, int n){
return ((float)i) / (n - 1);

}

float distance(float x1, float x2){
return sqrt((x2 - x1)*(x2 - x1));

}
…

2.2 Modify kernel.cu
• Copy the loop body

outside the main()in a
distanceKernel
function comprising
scale() and
distance().

• Replace the for loop with
the kernel launch
distanceKernel<<<N/T
PB, TPB>>>(d_out,
ref, N)

6

… distanceKernel(…){
… scale(…);
… distance(…);

}

int main(){
float out[N] = {0.0};
const float ref = 0.5;
distanceKernel<<<N/TPB, TPB>>>(d_out,ref,N);
return 0;

}

No loop… grid instead!

One single function to be run on GPU

3.1 Create Kernel Definition
__xxx__ void distanceKernel(float *d_out,
float ref, int len)
{
…

}

Question: __global__, __device__, or __host__ ?
Hint: We call this function from the host and want to run on
GPU

7

3.2 Create Kernel Definition
__xxx__ float scale(int i, int n)
{
return ((float)i)/(n - 1);

}

Question: __global__, __device__, or __host__ ?
Hint: We call this function from the GPU and want to run on
GPU

8

3.3 Create Kernel Definition
__xxx__ float distance(float x1, float x2)
{
return sqrt((x2 - x1)*(x2 - x1));

}

Question: __global__, __device__, or __host__ ?
Hint: We call this function from the GPU and want to run on
GPU

9

4. Get the global thread ID using index variables

Inside the kernel add the formula for computing index i (to replace the
loop index of the same name that is now removed) using built-in index
and dimension variables that CUDA provides with every kernel launch:

const int i = blockIdx.x*blockDim.x + threadIdx.x

10

__global__ void distanceKernel(float *d_out, float ref, int len)
{
const int i = blockIdx.x*blockDim.x + threadIdx.x;
const float x = scale(i, len);
d_out[i] = distance(x, ref);
printf("i = %2d: dist from %f to %f is %f.\n", i, ref, x, d_out[i]);

}

5. Create results array (d_out) on the GPU
Question: Which CUDA function do we use?

11

…
int main()
{

…
// Declare a pointer for an array of floats
float *d_out = 0;
// Allocate device memory for d_out
cudaMalloc(&d_out, N*sizeof(float));
// Launch kernel to compute
distanceKernel<<<N/TPB, TPB>>>(d_out, ref, N);
return(0);

}

Did we forget anything?

Putting everything together: our first CUDA code
int main()
{
const float ref = 0.5f;

// Declare a pointer for an array of floats
float *d_out = 0;

// Allocate device memory to store the output array
cudaMalloc(&d_out, N*sizeof(float));

// Launch kernel to compute and store distance values
distanceKernel<<<N/TPB, TPB>>>(d_out, ref, N);

cudaFree(d_out); // Free the memory
return 0;

}

12

#include <stdio.h>
#define N 64
#define TPB 32

__device__ float scale(int i, int n)
{
return ((float)i)/(n - 1);

}

__device__ float distance(float x1, float x2)
{
return sqrt((x2 - x1)*(x2 - x1));

}

__global__ void distanceKernel(float *d_out, float ref, int len)
{
const int i = blockIdx.x*blockDim.x + threadIdx.x;
const float x = scale(i, len);
d_out[i] = distance(x, ref);
printf("i = %2d: dist from %f to %f is %f.\n", i, ref, x,

d_out[i]);
}

Compile it:

salloc --nodes=1 --gres=gpu:K420:1 -t 00:05:00 –A … -
-reservation=…

13

Ask for allocation:

nvcc -arch=sm_30 kernel.cu –o dist_v1

Run it:
srun –n 1 ./dist_v1

module load cuda/7.0

Load the CUDA environment:
On Tegner today!
Not Beskow.

Questions
• Does it work?
• Does it print anything ?

14

Use cudaDeviceSynchronize() !

Where is my data: host or device memory?
• Remember that the kernel (distanceKernel()) executes on the

device, so it cannot return a value to the host.
• The kernel generally has access to device memory, not to the host

memory, so we allocate device memory for the output array using
cudaMalloc()

15

Question: In kernel.cu, how would you move d_out from the device to
host memory?

Careful with Integer Arithmetic!
The kernel execution configuration is specified so that each block has
TPB threads, and there are N/TPB blocks.

16

Problem: What happens if N = 65 ?

We get 65/32 = 2 blocks of 32 threads. In this case, the last entry in the
array would not get computed because there is no thread with the
corresponding index.

The simple trick is to change the number of blocks as (N+TPB-1) /TPB to
ensure that the number of blocks is rounded up.

How do I choose TPB or execution configuration?

To choose the specific execution configuration that will produce the best
performance involve both art and science.

• To choose some multiple of 32 is reasonable since it matches
up somehow with the number of CUDA cores in an SM

• There are limits: a single block cannot contain more than
1,024 threads

• For large problems, reasonable to test are 128, 256 and 512.

17

Lab Exercises: CUDA Part 1
• Hello World in CUDA.

• Think about the problem we had in printing from the
device

• CUDA Fortran does not support printing from kernel so
no exercise 1 for the Fortran club

• Write a CUDA code saxpy (Single-precision alpha*X + Y)
to run on GPU
• Think about how we implemented kernel.cu

18

