

Introduction to GPUs

S. Markidis, I.B. Peng, S. Rivas-Gomez KTH Royal Institute of Technology

GPUs

GPU = Graphical Processing Unit = <u>specialized</u> microcircuit to accelerate the creation and manipulation of images in video frame for display devices.

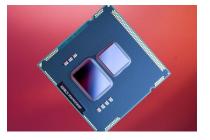
GPUs are used in <u>game consoles</u>, <u>embedded</u> <u>systems</u> (like systems on cars for automatic driving), <u>computers</u> and <u>supercomputers</u>.

 Since 2012, GPUs are the main workforce for training deep-learning networks

Some important GPU vendors: NVIDIA, AMD, ...

The Rise of GPUs in HPC

GPUs are a core technology in many world's <u>fastest</u> and most <u>energy-efficient</u> supercomputers GPUs compete well in terms of **FLOPS/Watt**


 In the current Green500, the top 6 most energy-efficient supercomputers use NVIDIA P100 GPU

Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)	Power (kW)	Power Efficiency (GFlops/watts)
1	61	TSUBAME3.0 - SGI ICE XA, IP139-SXM2, Xeon E5-2680v4 14C 2.4GHz, Intel Omni-Path, NVIDIA Tesla P100 SXM2 , HPE GSIC Center, Tokyo Institute of Technology Japan	36,288	1,998.0	142	14.110
2	465	kukai - ZettaScaler-1.6 GPGPU system, Xeon E5-2650Lv4 14C 1.7GHz, Infiniband FDR, NVIDIA Tesla P100 , ExaScalar Yahoo Japan Corporation Japan	10,080	460.7	33	14.046
3	148	AIST AI Cloud - NEC 4U-8GPU Server, Xeon E5-2630Lv4 10C 1.8GHz, Infiniband EDR, NVIDIA Tesla P100 SXM2, NEC National Institute of Advanced Industrial Science and Technology Japan	23,400	961.0	76	12.681
4	305	RAIDEN GPU subsystem - NVIDIA DGX-1, Xeon E5-2698v4 20C 2.26Hz, Infiniband EDR, NVIDIA Tesla P100 , Fujitsu Center for Advanced Intelligence Project, RIKEN Japan	11,712	635.1	60	10.603
5	100	Wilkes-2 - Dell C4130, Xeon E5-2650v4 12C 2.2GHz, Infiniband EDR, NVIDIA Tesla P100, Dell University of Cambridge United Kingdom	21,240	1,193.0	114	10.428

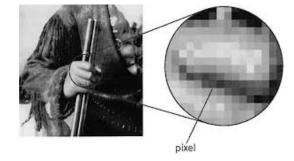
Where do you find GPUs ?

- **Integrated:** Every laptop has an integrated GPU built into its processor, i.e. Intel HD or Iris Graphics.
- **Dedicated:** A standalone GPU uses its own processor and memory. Most dedicated GPUs are removable. They require more power but also provide higher performance
 - In HPC, we use dedicated GPUs

Source: PC Authority

Source: bit-tech.net

Question: What is the main difference between the two?


GPU Design Motivation: <u>Process Pixels</u> in Parallel

Data parallel

- In 1080i and 1080p videos, 1920 x 1080 pixels = 2M pixels per video frame → compute intensive
- Lots of parallelism at low clock speed → power efficient

Computation on each pixel is <u>independent</u> from computation on other pixels.

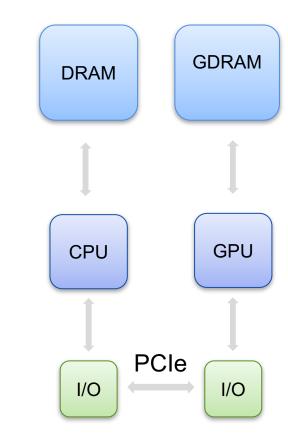
- No need for synchronization
 Large <u>data-locality</u> = access to data is regular
- No need for large caches

KTH VIETNAMA VIETNAMA	N at are the differences?								
The second s	CF	U			G	PU			
	Control	ALU	ALU					Control	ALU
		ALU	ALU						ALU
	Cache							Cache	
DRAM	DRAM			D	RAM			DRAM	

CPU has tens of massive cores, CPU excels at <u>irregular control-intensive</u> work

- Lots of hardware for control, fewer ALUs
 GPU has thousands of small cores, GPU excels at <u>regular math-intensive</u> work
- Lots of ALUs, little hardware for control

D


GPUs as Accelerators

GPU are simple, lower power and highly parallel

Problem: Still require OS, IO and scheduling

Solution: "Hybrid System"

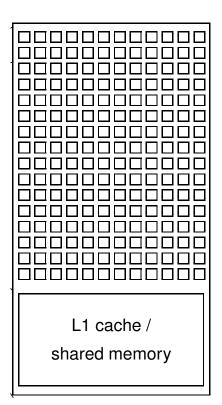
- CPU provides management
- "Accelerators" (or coprocessors) such as GPUs provide compute power

GPU Hardware Model

In order to program a GPU program, it is important to understand the Hardware Model.

The fundamental computing entity is

- Streaming Processor (SP) or CUDA core
- A Streaming Multiprocessor (SM):
 - A collection of 8/32/192 CUDA Cores (depends on SM architecture)
 - All CUDA cores in SM run the same instructions
 - Has some fast cache shared memory
 - Can synchronize


o I	S	Μ				
I	I-Cache					
I	MT Issue					
J	C-Cache					
>	SP	SP				
	SP	SP				
	SP	SP				
	SP	SP				
2	SFU	SFU				
2	Shared Memory					

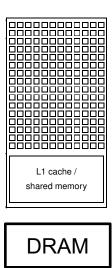
SMX = Next Generation SM

SM Architecture introduced in Kepler:

- Unified clock to save power
- 192 cores per SMX

Today Lab: Which GPU?

You are going to ask for a K420


salloc --nodes=1 --gres=gpu:K420:1 -t 00:05:
00 -A ... - -reservation=...

also available on Tegner: gpu:K80

K420

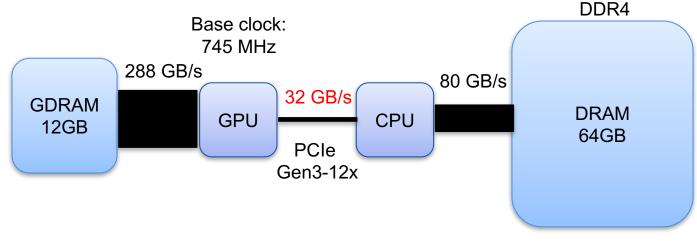
- 1 SMX:
- 192 cores!

Questions: how many cores per node on Beskow?

K80

2 GPUs:

• 13 SMX per GPU


Questions: how many cores?

2 x 13 x 192 = **4992!**

Weakness of GPU (but not for too long ... NVLink)

GPU is very fast (huge parallelism) but getting data from/to GPU is slow

NVIDIA TESLA K40 = the most common GPU on supercomputers in Nov. 2016 Top500 list

Is GPU good for my *non-graphics* application?

It depends on the application:

- **Compute-intensive applications** with little synchronization benefit the most from GPU:
 - Deep-learning network training 8×-10×, GROMACS 2×-3×, LAMMPS 2×-8×, QMCPack 3×.
- Irregular applications, such as sorting and constraint solvers, are faster on CPU.

General strategy when you work on your code: take the computational-heavy part of your code and run it on GPU

Low-Level Programming GPUs

- OpenCL (Open Computing Language): based on C, not only for GPUs but also for other "accelerators" (DSP, FPGA, …)
- CUDA (compute unified device architecture): extension to C language. Only for NVIDIA GPUs.

High-Level Programming Interfaces

- **OpenMP**: compiler directives and library for accelerators
- **OpenACC**: compiler directives and library for NVIDIA GPUs

- **Thrust**: C++ template library resembling C++ STL.
- **OpenCV**: Computer vision library using GPU
- CUDA-based libraries for math: cuBLAS, cuFFT, cuDNN, ...

Compiler + runtime library

Libraries atop CUDA

Let's move to CUDA now ...