

PDC HPC Summer Course DN2258/FDD3258 2017 7.5 ETCS

Attendance, two weeks Lectures and labs: Get Lab attendance sheet signed !

Project, finished Fall '17:

Grade: Grad.: P,F Undergrad. : E... A

Support: Lab assistant, Project advisor, Examiner

Project:

- For some application and HPC architecture of your choice:
- Develop efficient program for non-trivial problem
- Demonstrate and report how efficient it is.

Expected work on the project is **3 weeks** of work *incl.* report writing *Deadline for reports: Nov 10, 2017.* 4

The project is *not* about:

- Substantial development of new code.
- Scientific results obtained with code
- So:

Prioritize measurements and analysis/interpretation! Demonstrate use of tools (profiling, ...), and simple performance model.

NO TIME for development of new significant code.

Examples:

* Parallelize a code you know and/or work with; choose interesting part.

5

- * Write a simple code for key algorithm of bigger solution process
- * Write a simple code for a simple problem

Now – during lab-afternoons • Discuss with instructors & course participants, form groups of size G. • Define project and choose tutor: Michael, Thor, Roman, Stefano, ... • Write very short synopsis, check with supervisor ! • Submit synopsis to *summer-info@pdc.kth.se* before end of the course Later -• Start the work *ASAP*: • Finish the work; Get in touch with tutor !! • Submit report to *tutor*. The report will be graded and sent back with comments; you may have to complete some parts and hand in again. We need email and paper mail address! • KTH students: LADOK • Other students: Certificate will be sent to you 6

- 1. Develop initial version of program;
- Develop approximate Performance model = theoretical prediction: time = f(problem size N, #processors P, problem partitioning parameters, ...) Try to assess the *communication* and *computation* times separately.
- 3. *Measure* performance, e.g. t = f(N,P,...), for different problem sizes, if relevant x = wall clock time start to finish, (*not* CPUtime), ...

Size \ # proc	1	2	4	n
N_1	х	Х	х	х
N_2	х	Х	Х	Х
$N_{\rm M}$	х	х	х	X

4. If suitable, plot "speedup" and/or "efficiency", MFLOPS?, ...

- Make several measurements to discover variations discuss sources of variability. (interactive nodes, dedicated,...)
 - Compare w. prediction; Interpret: Why these numbers?
- Identify "bottlenecks" by profiling tools; find remedy & make changes
- Check improvement by measurements
- Write report with description of problem, *algorithm*, and design decisions, pertinent graphs of measurements and profiling, "before and after".

Single processor performance	Multi-processor performance
Algorithm:	Algorithm: Communication !
BLAS etc. library	Latency vs. bandwidth
Memory hierarchy	# messages vs. size
Disk - main - cache - register;	
Organization of loops	Problem partitioning
data layout (cache misses)	Load balancing
index strides (-"-)	
"unrolling"	
Compiler directives ("-O2")	

	Various Information
	Certificates will be issued to all successful students
	 Tutors will be available for lab sessions Ask them questions But they will also ask you!
KTH vetenskap och konst	Labs in groups of 2-3 people
	Door access code for lab room: 1425
PDC Center for gh Performance Computin	 Wireless Eduroam If you don't have eduroam you can use KTHOPEN Passwords will be distributed as needed
	 All material available via the course homepage http://agenda.albanova.se/conferenceDisplay. pv2confId=6191
	10

PDC's Mission

Research

Conduct world-class research and education in parallel and distributed computing methodologies and tools as part of CSC's HPCViz department

PDC Center for High Performance Computing

Infrastructure (PDC-HPC)

Operation of a world-class ICT infrastructure for Swedish research, including HPC and data services, with associated user support and training

17

PDC HPC Infrastructure							
KTH	System	System/Processor	TPP (TF)	Cores			
	Beskow	Cray XC40 Intel Haswell	1,973	53,632			
	Tegner	SuperMicro Intel Ivy Bridge & Haswell Nvidia K420 & K80	65 + GPU	1,800 + GPU			
	Milner	Cray XC30 Intel Ivy Bridge	48	2,400			
PIC catter for High Performance Computing							
	A REAL PROPERTY	The Read of Contraction	00	18			

