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p-Integrals I

We want to compute massless 2-point integrals at 5-loops.
We are interested in computing this two families of
integrals:

Momentum-space integrals
Position-space integrals (i.e propagators of type
xij = xi −xj ).

We can map the planar sector of this two types of integrals
but we have to compute the non planar part separately.
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Integral-by-parts Identities

IBPs are integration of a total derivative:

0 =
∫ dD`1

iπD/2 . . .
dD`L

iπD/2

L

∑
j=1

∂

∂`
µ

j

v µ

j

Dν1
1 · · ·D

νm
m

,

They can be used to express a general integral as a
combination of Master Integrals:

I =
N

∑
i=1

ci Ii ,
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Integral-by-parts Identities: constraints

How can we learn something from the IBP reductions
regarding the epsilon expansion of the master integrals?

Degree of divergence of a l-loop 2-point integral does
not exceed l.
IBP coefficients, in e.g. d=4-2 ε, might have poles in ε.
Reducing convergent integrals!
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Integral-by-parts Identities: Example

Reduction of two-loop propagator integral

=
2(3d −10)(8−3d)

(d −4)2

− 2(d −3)
d −4

The spurious pole give a constrain on two epsilon orders.
Convergence of the starting integral and the insertion of the
value of the trivial integral MDbubble =

1
ε2 gives:

MSun =−
1
4ε
− 5

8
− 27

16
ε

Simple algebra gave us a integral result!
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Asymptotic expansions

Start from a 4-point finite conformal integral.
We can now take the limit x2→ x1 = 0 which introduces
two scales x2

2 � x2
3 .

xi is of the order of x2 or order of x3. For x2
2 < x2

i we
can write:

1
(x2−xi)2 =

∞

∑
n=0

(2x2 ·xi −x2
2 )

n

(x2
i )

n+1

2l possible such regions.
For finite integrals the expansion is still finite.
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Example

C1 =
∫ d4x5 . . .d4x9 x4

13x6
24x2

35

x2
15x2

16x2
26x2

27x2
29x2

34x2
36x2

37x2
45x2

48x2
56x2

58x2
59x2

78x2
79x2

89
.

C1||x12|�|x13| ∼ x2
13

∫ d4x5 . . .d4x9

x2
15x2

16x2
26x2

27x2
29x2

56x2
58x2

59x2
78x2

79x2
89

∼ u−11+ 5d
2 (x2

13)
−10+ 5d

2 P(5)(d) .

P(5)(d = 4−2ε) =
c1

ε5 +
c2

ε4 +
c3

ε3 +
c4

ε2 +
c5

ε
+c6 +O(ε) .

c1 = c2 = c3 = c4 = c5 = 0 .
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We can fix the c6 by using magic identities!

Take the 4-point conformal integral with points {x7,x8,x9}.

Exchange x2↔ x3, x4↔ x5 and expand:

C2||x12|�|x13| ∼ u−5+d(x2
13)
−10+ 5d

2 P(2)(d)P(3)(d) .

C2||x12|�|x13| ∼
120 ζ (3)ζ (5)

u
.

This also fixes the finite term of the five-loop p-integral to be

c6 = 120 ζ (3)ζ (5) .
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How?

Finite 4-point conformal integral

Asymptotic
expansions

p-Integrals IBPs

Constraints on p-Integrals
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Results

With IBPs and conformal symmetry constraints we were
able to fix:

Expansions of 169 out of the 187 genuine five-loop
masters.
All but two of the 95 planar masters were fixed to
transcendental weight 9 in this way.
In order to get the 169 integrals up to trascendentality
9 we used parametric integration (8 single orders of 7
integrals needed).
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Glue and Cut symmetry

If we want to compute non planar momentum space
integrals we can use a different method.
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Glue and Cut symmetry

"Finite" 6-loop vacuum integrals

Cut propagators

p-Integrals IBPs

Constraints on p-Integrals
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Conclusions

In the G-scheme normalization:
We find that ζ2 is absent!
The coefficients of ε−n never have transcendental
contributions of weight larger than 9−2n (where n > 0).
We can redefine odd zeta values to eliminate even
zetas in the expansion of all master integrals.
Any dependence on multiple zeta values comes in the
combination ϖ = ζ2,6−ζ5,3.

QCDmGRAVITYIVDepartment of Physics and Astronomy - 15 - A. Georgoudis



Summary and future directions

Presented recent result for 5-loop master integral.
All the complication is encoded in the IBP reductions.
Applying CaG symmetry to higher loops to check and
obtain new results.
Derive similar results for different dimensions (e.g
d = 3).
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Thank You
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