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...

Wick-Cutkosky model =

m1

m2

planar ladders for 
(scalar) ep scattering

The model has interesting symmetries. [Cutkosky ’54] 
showed that mass& CM energy enter only through:

‘QCD-ish’  
part of talk

u =
s�m2

1 �m2
2

2m1m2



• Solvable thanks to hidden SO(4,2)  
 ‘dual conformal symmetry’

• Obviously not a realistic model! (even for QED)  
Symmetry is not realistic either.

• Surprising fact: a SO(1,2) subgroup actually is a 
symmetry of GR @ 1PM (⇒EOB).  
 
This is what I’ll now comment on.

• In ’54, solution required to invent Wick rotation
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[Cutkosky ’54  
Itzykzon&Bender ~70]

[Buonanno& Damour '99]



Dual conformal symmetry = conformal SYM in mom space

...

For any planar graph, introduce 6-vector in each region

L L’

Y1

Y2

Y3

Y4

Idea: propagators ⇒ dot products 

L·Y1, L·Y2, L·Y3, L·L0 . . .
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[cf App of Henn+SCH ’18]
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easy to find explicit 6-vectors

region momenta: yµ1 = 0, yµ2 = pµ1 , yµ2 = (p1 + p2)
µ, . . .
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Since all denominators are 6D dot products,  
they transform nicely under SO(4,2) rotations

SO(4,2)  =

-Lorentz SO(3,1)
-Translations of y𝜇

-Dilatations
-Special conformal of y𝜇

6
4
1
4
15

Obviously, dilatations and special conformal 
transformations are not symmetries when m≠0.  
They are covariances of the model.



...

Y1

Y3

Two interesting subgroups:

1. symmetries of bound states 
   = SO(4) which preserves Y1, Y3  (thus m1,m2,E) 

2. symmetries of rest frame 
   = SO(3) x SO(1,2) which acts on m1,m2,E



The SO(4) symmetry is well-known. 

= rotations+Laplace-Runge-Lenz

SO(4) ⇒ -no perihelion precession (closed orbits)  
-quantum degeneracies of H (En,` = En)

This SO(4) clearly is not a symmetry of GR,  
and it won’t be our focus today

Is an exact (relativistic) symmetry of Wick-Cutkosky model
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Claim: SO(1,2) is a symmetry of GR @ 1PM
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SO(1,2) acts on E,m1,m2, but preserves the cross-ratios:
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 11

Since translations of y0 do not affect kinematics, what 
matters is actually the 2D coset SO(1,2)/SO(0,2)

One generator = (4,5)-plane boost, which is just dilatation:
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two-body one-body

The other SO(1,2) boost is more interesting:  
can use it to map any kinematics to probe limit m1 ! 1

This is the EOB map, realized as dual conformal transformation
[Buoannano& Damor ’99]
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Consider Post-Minkowski EFT:

in form of [Cheung,Rothstein&Solon ’18]

Apply EOB change of variable:

|~p1i 7!
����
@ ~pe↵
@~p1

����
�1/2

|~pe↵i

Hreal|~p1i =(
q

~p1
2 +m

2
1 +

q
~p1

2 +m
2
2)|~p1i+

Z

~p0
1

V (~p1, ~p
0
1)|~p01i

He↵ |~pe↵i =
q

~p
2
e↵ + µ2|~pe↵i+

Z

p0
eff

VEOB(~pe↵ , ~p
0
e↵)|~p0e↵i



 14

What about GR?

In Wick-Cutkowski model, VEOB = V
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In the EOB frame,                :
1PM Hamiltonian = probe of mass 𝜇 in Schwartzschild
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There is nothing special about GR here;  
we could have a dilaton and/or electric charges

At 1PM, the EOB-frame potential is always the same  
as the original one, up to some rescaling of the charges.

SO(1,2) = symmetry of 1PM approximation. 

Generalizes that  ‘physics depends only on reduced mass’.

Q: -Does it first break at 2PM or higher?  
     -How does SO(1,2) acts on spin?

[Damour et al ]



Part II: N=8 no-precession
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In planar N=4 SYM, SO(4,2) is exact

Can get masses via Higgs mechanism.  
Hydrogen-like bound states have SO(4) LRL symmetry.

[SCH& Henn, ’14]

Is there a gravity theory with hidden (SO(4,2)?) symmetry?

[Bern,Dixon&Smirnov(+Kosower,Anastasiou); 
Drummond,Henn,Smirnov&Sokatchev; 

Alday&Maldacena,…]



integrability of  
planar N=4 SYM
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dual conformal

LRL vector / SO(4)  
No precession

+ conformal =     Yangian

theory integrable



Best candidate for gravity with hidden symmetries:

[Arkani-Hamed, Cachazo& Kaplan ’08]

(N = 4)2N = 8 =
sugra sym

our strategy:  check a physical observable

do two-body subsystems have a conserved LRL?
[more precise: degeneracy of S-matrix poles; 
such exclusive amplitudes suppress radiation]
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we’ll compute the analog of mercury precession of 
perihelion for half-BPS black holes in          supergravity

Differs from GR since  
          has other light DOFs

Result:  ≈0



Setup

 20

two extremal (half-BPS) black holes

Zahra Zahraee (McGill University) Orbits (Precession) of Supersymmetric Black Holes in N = 8 SupergravityJune 21, 2018 20 / 47

 
gravity
electric
scalar

Total force:

+
+

0



Setup
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two extremal (half-BPS) black holes

Zahra Zahraee (McGill University) Orbits (Precession) of Supersymmetric Black Holes in N = 8 SupergravityJune 21, 2018 20 / 47

 
gravity
electric
scalar

Total force:

+
+

0

need misaligned 
charge vectors

⇥“ cos ✓00

6= 0



N = 8Recall           graviton multiplet:

Classifying misalignments

electric charges is 
8x8 antisymmetric matrix

�+3/2
I

1
8
28
56

70
56
28
8
1 g��

g++

 +1/2
IJK

�IJKL

…

A+
IJ

charges are 8x8 matrices; 
3 angles between 1/2-BPS charges

[SCH+Zarahee ’18]



1. Special Special case: 1 angle  
 
equivalent to KK graviton from 10D IIA on T6 
 

2. Special case:  2 angles 
 
 
T-even so can be realized without mag charge

3. General case: 3 angles 
 Re CB = electric  
 Im CB= magnetic
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has both!

�3 = ��1, �4 = ��2

�3 = �4 = ��1 = ��2

⇒integrand known to 5 loops!

✓

✓

[partial results]



• BPS bound states [static]

• Motion at low velocities

• velocity expansion for D0 branes, etc

• …
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HUGE literature on BPS states

[Denef& Anynos, …]

Instead of piecing results together,  
we just computed from scratch

We want: relativistic velocities and non-aligned charges

[…]

[‘wall crossing’]



Long range forces = exchange of massless particles

[Feinberg& Sucher, ’80s;
Bjerrrum-Bohr, Donoghue, Holstein, Vanhove, …]

Figure 5. Caption

Again setting ✓1 = 0 and using the �-function to eliminate ✓2 from the exponent, we get the
amplitude for ��̄ as

A
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= AL exp
⇣
. . .

X
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⌘
. (3.20)

Extracting the g++g++ positive-helicity gravitons, where ⌘ = 0, we fix the proportionality
constant [say where this comes from: the form seems uniquely fixed by little group,
with proportionality constant fixed from factorization on pA · k pole?]

AL =
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[34]4

(pA · k)(pA · k0)(k · k0)
. (3.21)

Where k and k0 are:
k = 3i[3 k0 = 4i[4 (3.22)

We can check that A1,1 is correct by checking with the result we get from ��̄ ! g++g�� and
��̄ ! g++g��. [elaborate?]

The amplitudes on the right is similar but with an extra phase ei�I in the exponent as in
eq. (3.15). Multiplying the two amplitudes and integrating over the Grassman variables we
get
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where the square bracket notation indicates that the other factors are only valid when the two
denominators inside the bracket vanish, ie. on the cut. [Explain that the ⌘ integrals give
a determinant, which is independent of loop momentum, so we get a box. . . ]
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1PN
0PN+1PN

long distances = t-channel cut

…

On-shell susy Ward identities fix 3&4-point amplitudes
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square and integrate over 𝜂3,𝜂4.

3

4

+

No triangle!!

One loop
(subtlety if mag charge)



Precession?
Link between scattering problem & closed orbits: EFT

0PN

1PN



Precession?
Link between scattering problem & closed orbits: EFT
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0PN

1PN

free
EFT  

matching: tree 1-loop

[same logic as pNRQCD!]



EFT  
matching:

Now H1PN as a function of conserved quantities can be written as:
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[Now there are two ways to take the time average, there is in Kol’s here which is straightforward
but computational, there is also a more direct one which i should ask about, choose one to
write here] The result of time averaging is:
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Now since A and E commute, then simply enough, we only need terms proportional to 1
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So we see that hȦi is proportional to a specific combination of A,B,C and D. This combination
for general relativity turns out to be:
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(5.19) of [4] which reproduces the old results in the literature.
In our case, replacing the values for A,B,C and D we get:

⇥
4A↵2 + ↵(2B + C) +D

⇤
=↵2


4(3⌫ � 1)

8
� 2a⌫ � b⌫ + c

�

=� ↵2


(2a+ b)

m1m2

(m1 +m2)2
+

1

2
�

3m1m2

(m1 +m2)2
� c

� (4.29)

With our choice of a and b and the value we derived for c, we get:
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So we see that indeed the fact that the one loop order amplitude has no 1p
t

term and hence
no contribution to the second order potential indeed means that the precession is zero and the
LRL vector is conserved. To see it more directly, one should notice that the first three terms
in the right hand side of (4.30) are exactly there to cancel the contribution of the second
order Born approximation to c (4.19). So the only term remaining in c is the term that it
gets from the loop amplitude. So in generate we can write:

Ȧ ⇠

⇣
terms coming from the loop amplitude in c

⌘
(4.31)

So we see a connection between the fact that there is no triangle in the amplitude (terms
which contribute to the second order potential) and the conservation of LRL vector. To
explain better refer to [2]]
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No triangle ⇔ No ⇔ No precession

same!

[Kol]

Clearer link would be desirable between these observables



Probe limit

N=8 sugra = 10D IIA compactified on T6.  
‘large’ black hole:  take D6-brane, preserves symmetries

Probe Limit

We consider a probe D0 brane in the background of D6 branes. The
action is just the DBI action and can be written as:

Sp = m

Z
d⌧e��

p
�gMN@⌧XM@⌧XM + q

Z
AM

dxM

d⌧
(27)

Where the metric is the D6 brane metric:
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dt2+
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H(r)(dr2+r2d⌦2)+

1p
H(r)

6X
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dx idx i (28)

Now calculating �� for the motion of this D0 probe we are going to
get

�� =

Z rmax

rmin

dr
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r
p
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= 2⇡ No Precession!

(29)
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(27)

Where the metric is the D6 brane metric:

ds2 = � 1p
H(r)

dt2+
p
H(r)(dr2+r2d⌦2)+

1p
H(r)

6X

i=1

dx idx i (28)

Now calculating �� for the motion of this D0 probe we are going to
get

�� =

Z rmax

rmin

dr
d�

dr
=

Z rmax

rmin

dr
1

r
p
↵r2 + �r � 1

= 2⇡ No Precession!

(29)
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As a simple validation, we can check that this reproduces the celebrated result in General
Relativity, taking the coefficient of 1/

p
�t in the amplitude in eq. (3.45):

(��)GR =
6⇡(GNmAmB)2

L2
. (4.37)

5 Probe limit

An important question now is to determine whether the lack of precession just calculated to
first post-Newtonian order survives to higher orders and beyond perturbation theory. For
getting a hold of the answer, we turn to the probe limit, mB ! 0, where we can study bound
orbits to all orders in velocity, in terms of geodesic motion in a classical background solution.
This will be most conveniently done by uplifting the N=8 theory to type IIA supergravity
compactified on a T6.

For the heavy background mA, we choose a stack of D6 branes, which preserves all the
symmetries of the torus. Using a D6 probe with various U(1) flux, we will be able to realize
the general case of three angle charge misalignment described in section 2. As a warm-up,
we first consider D2 and D0 branes, the latter being magnetically charged with respect to the
D6. We will find no precession to all orders in velocity, in all cases. The central charges of
these various probes are worked out in appendix B.

5.1 D2 probe in D6 background

For pedagogical reasons, let us start with a D2 brane probe, since it interacts neither mag-
netically nor electrically with the D6 background. This will realize a single free misalignment
angle, corresponding to the probe’s Kaluza-Klein momentum. The DBI action in this case is:

SD2 = TD2

Z
d3⇠e��

p
� det(�ab) (5.1)

where �ab is the induced metric on the brane. The background metric induced by the D6
stack, see [51], is a BPS solution carrying electric charge with respect to A7:

ds2 = � 1p
H(r)

dt2 +
p

H(r)(dr2 + r2d⌦2) +
1p
H(r)

6X

i=1

dxidxi (5.2)

where
H(r) = 1 +

4GNmA

r
, GN =

g2s l
2
s

8

✓
(2⇡ls)6

Vol(T6)

◆
. (5.3)

Here the dilaton field (we absorbed the string coupling into T2 so that � vanishes at infinity)
is given as

e� = H(r)
�3
4 . (5.4)

Since the background metric is translation invariant along the T6, we can look for solutions
where the D2 spans only two directions of the torus and is supported on a point in the four
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e
�2� = H(r)3/2
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Example effective metrics for the probe:

D0-D6

This satisfies the Dirac quantization condition (2.10) with �i = ⇡

2 . Now in order to check
whether we have precession or not, again, we find it useful to redefine the metric so g̃mn =

e�2�gmn:

ds̃2 = �H(r)dt2 +H2(r)(dr2 + r2d⌦2) +H(r)
6X

i=1

dxidxi . (5.16)

Note that this differs from eq. (5.6) by a factor H(r): this was cancelled there by the volume of
the two torus. Following the same procedure as the D2 case, we can choose a parametrization
such that eq. (5.7) holds for our metric. The conserved quantities are then identical to eq. (5.8),
with the exception of the angular momentum vector which acquires an extra term:

~L = ~̃L+
N0N6

2

~r

r
(5.17)

where L̃ denotes the conventional angular momentum vector. This is a well-known fact about
magnetic charges (see for example [25, 34]) which can be easily verified using the equation of
motion from the action (5.12). If we choose L to be along the z-direction we have:

~L · ~r =
N0N6r

2
) z

r
=

N0N6

2Lz

⌘ cos(✓0). (5.18)

This shows that the motion of the probe particle is confined to the surface of a cone with
half-angle ✓0 whose tip lies at the D6 stack, see fig. 5. Substituting this relation back into
eq. (5.17) then gives:

Lz = mB g̃��
d�

d⌧
+

(N0N6)2

4Lz

) P� ⌘ g̃��
d�

d⌧
=

Lz sin2 ✓0
mB

. (5.19)

We can now calculate the precession angle for the D0-D6 system using the general formula
(5.10) and the above expression for P� in terms of the conserved quantity Lz:

�� = 2

Z
rmax

rmin

dr
d�

dr
=2

Z
rmax

rmin

dr/rr
m

2
B(E2�P

2
?)

L2
z

H(r)r2 � sin2 ✓0 �
m

2
BH2(r)r2

L2
z

(5.20)

Recall that H(r) = 1 + 4GNmA
r

. The expression in the square root is again a quadratic
polynomial in r,

m2
B
(E2 � P 2

? � 1)

L2
z

r2 +
4GNmAm2

B
(E2 � P 2

? � 2)

L2
z

r �

(N0N6)
2

4z }| {
16G2

Nm2
Am

2
B

L2
z

� sin2 ✓0 =

m2
B
(E2 � p2? � 1)

L2
z

r2 +
4GNmAm2

B
(E2 � P 2

? � 2)

L2
z

r� cos2 ✓0 � sin2 ✓0| {z }
�1

.

(5.21)

On the first line we used the BPS condition (5.15). Remarkably, the constant term in the
polynomial is again equal to �1, which as in eq. (5.11) implies that the orbits do not precess:

�� = 2⇡. (5.22)
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Z

✓0

Figure 5. The orbit of an electrically and magnetically charged object is confined to the surface of a
cone with half-angle ✓0.

The second line follows because H(r) = 1 + 4GNmA
r

is linear in 1/r, so that the denominator
is quadratic in r: this allows the integral over an orbit to be deformed into a contour integral
around the pole at r = 0. Thus the metric in eq. (5.6) is very special: geodesics in it do not
precess.

5.2 D0 probe in D6 background

As a second step toward the general case, let us now consider the case of a D0 brane, which
carries magnetic charge with respect to the A7 RR-form sourced by the D6 (it is dual to the
A0 field to which the D0 couples, dA7 = ⇤dA0).

The DBI action for the D0 brane can be written as:

Sp = mB

Z
d�e��

p
�gmn@�Xm@�Xn +N0

Z
Am

dxm

d�
d� (5.12)

where mB is the mass and N0 is the number of D0 brane probes. The vector potential takes
the familiar Dirac monopole form

~A(r) =
N6

2r

[~r ⇥ ~n]

r � (~r · ~n) (5.13)

where N6 is the number of D6 branes. Note that the vector potential is nonvanishing only
along the four space-time directions ~r = (0, x, y, z), because the D6 background fills the T6.
This has constant magnetic flux,

~B = ~r⇥ ~A =
N6

2

~r

r3
(5.14)

and the extremality constraint on the D0 and D6 brane masses and charges can be written as

8GNmAmB = N0N6. (5.15)
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As a simple validation, we can check that this reproduces the celebrated result in General
Relativity, taking the coefficient of 1/

p
�t in the amplitude in eq. (3.45):

(��)GR =
6⇡(GNmAmB)2

L2
. (4.37)

5 Probe limit

An important question now is to determine whether the lack of precession just calculated to
first post-Newtonian order survives to higher orders and beyond perturbation theory. For
getting a hold of the answer, we turn to the probe limit, mB ! 0, where we can study bound
orbits to all orders in velocity, in terms of geodesic motion in a classical background solution.
This will be most conveniently done by uplifting the N=8 theory to type IIA supergravity
compactified on a T6.

For the heavy background mA, we choose a stack of D6 branes, which preserves all the
symmetries of the torus. Using a D6 probe with various U(1) flux, we will be able to realize
the general case of three angle charge misalignment described in section 2. As a warm-up,
we first consider D2 and D0 branes, the latter being magnetically charged with respect to the
D6. We will find no precession to all orders in velocity, in all cases. The central charges of
these various probes are worked out in appendix B.

5.1 D2 probe in D6 background

For pedagogical reasons, let us start with a D2 brane probe, since it interacts neither mag-
netically nor electrically with the D6 background. This will realize a single free misalignment
angle, corresponding to the probe’s Kaluza-Klein momentum. The DBI action in this case is:

SD2 = TD2

Z
d3⇠e��

p
� det(�ab) (5.1)

where �ab is the induced metric on the brane. The background metric induced by the D6
stack, see [51], is a BPS solution carrying electric charge with respect to A7:

ds2 = � 1p
H(r)

dt2 +
p

H(r)(dr2 + r2d⌦2) +
1p
H(r)

6X

i=1

dxidxi (5.2)

where
H(r) = 1 +

4GNmA

r
, GN =

g2s l
2
s

8

✓
(2⇡ls)6

Vol(T6)

◆
. (5.3)

Here the dilaton field (we absorbed the string coupling into T2 so that � vanishes at infinity)
is given as

e� = H(r)
�3
4 . (5.4)

Since the background metric is translation invariant along the T6, we can look for solutions
where the D2 spans only two directions of the torus and is supported on a point in the four
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We also looked at D6-D6 with fluxes

Using conservation laws, we compute, in all cases:

Probe Limit

We consider a probe D0 brane in the background of D6 branes. The
action is just the DBI action and can be written as:

Sp = m

Z
d⌧e��

p
�gMN@⌧XM@⌧XM + q

Z
AM

dxM

d⌧
(27)

Where the metric is the D6 brane metric:

ds2 = � 1p
H(r)

dt2+
p

H(r)(dr2+r2d⌦2)+
1p
H(r)

6X

i=1

dx idx i (28)

Now calculating �� for the motion of this D0 probe we are going to
get

�� =

Z rmax

rmin

dr
d�

dr
=

Z rmax

rmin

dr
1

r
p

↵r2 + �r � 1
= 2⇡ No Precession!

(29)
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Summary

• Extended no-triangle to 1/2BPS black holes in 

• Hope: reverse the logic :  ’no-triangle’ at higher-loops?

• -put higher-PM potential in N=8 in EOB form;  
  can we make ‘no-precession’ manifest?  
- Can the symmetry be formulated at higher-points?
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no-triangle no precession ⇔

1. 1PM approximation has so(1,2) dual conformal symmetry,  
   even in GR (⇔EOB)

2.


