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scattering of on-shell 2d massless scalars (left/right):
analog of 4d gauge vector scattering

•motivation: search for integrable σ-models
exact solution for strings in curved backgrounds
integrable deformations of AdS/CFT
(recent examples: β, γ, η, λ,...)
• classical integrability: existence of Lax representation for e.o.m.
search for Lax pair is generally hard
(other attempts: stability under RG flow; reduction to 1d
and check for absence of chaotic behaviour – inconclusive)
• standard lore in massive 2d models: [Arefieva, Korepin 74; Parke 80]

integrability↔ no particle production
and factorization of S-matrix (→ Yang-Baxter equation)
• S-matrix as guide to integrability for massless 2d theories?



• σ-model near trivial vacuum: massless scalar excitations
L = (Gmn + Bmn)∂+xm∂−xn

= (δmn + hmnkxk + cmnklxkxl + . . . ) ∂+xm∂−xn

constraints on coeffs→ geometry of integrable models from
no particle production/factorization of massless S-matrix?

• No: well-known integrable σ-models
have massless particle production
• link to integrability is preserved if expand near
non-trivial vacua with only massive excitations
• example: start with massive integrable 2d model
L = ∂+xn∂−xn −V(x), V = 1

2 m2x2 + gx3 + . . .
associated “pp-wave” σ-model : add “light-cone” directions
L̂ = ∂+u ∂−v + ∂+xn∂−xn −V(x) ∂+u∂−u, u, v = y± t



• near trivial vac u = v = x = 0: amplitudes for massless
x-excitations and even no. of u-excitations may not factorize
• but in “light-cone” vac u = τ, (v, x = 0): x are massive
resulting S-matrix factorizes for an integrable potential V
• similar: expand near BMN geodesic in AdSn × Sn but
breaks 2d Lorentz symmetry [Klose, McLoughlin, Roiban, Zarembo 06]

•massless S-matrix in 2d usually considered as suspect
standard interpretation may not apply – particles in
1d direction do not separate asymptotically
also: IR divergences at quantum level
“no Goldstone bosons in 2d” [Coleman 73]

[still: massless S-matrices were formally discussed
in context of finite-density TBA [Zamolodchikov, Zamolodchikov 92]

S-matrix: relative phase if one particle is moved past another]



• one can certainly define massless S-matrix at tree level
e.g., from classical action on solution with scattering b.c.:
should resulting massless S-matrix reflect
classical (non-)integrability? if yes then how?
[seems likely: standard defn of classical integrability via
Lax pair makes no distinction between massless and
massive cases, does not depend on expansion point]
• early indications that connection between integrability
and no particle production / factorization does not apply
in massless scale-inv case: non-zero 5-point tree amplitude
in Zakharov-Mikhailov model (classical dual of PCM) [Nappi 80]

tree particle production claimed in PCM and SN [Figueirido 89]

• if true, demanding factorization of tree-level S-matrix
may not be necessary for integrability of classical
scale-invariant 2d models with massless excitations



• aim: check and clarify why massless S-matrix exhibits this
tree-level “anomaly of integrability” (role of IR ambiguities)
•massless case remains little known and controversial;
may be in massless integrable case one may relax/modify
condition of no particle production? (cf. [Wulff 18])

• recent work [Gabai,Mazac, Shieber,Vieira, Zhou 18]:
hermitian matrix massless fields with 2-derivative interactions
alternative definition of no particle production for partial
colour-ordered amplitudes as opposed to full amplitudes
was claimed to lead directly to action of integrable U(n) PCM;
but unclear how to generalize this to other integrable σ-models
that do not have notion of colour-ordered amplitudes



•massless 2d S-matrices were discussed in non scale invariant
flat string Nambu-like models L(∂φ) [Duvovsky,Flauger,Gorbenko 12]

no IR divergences if scalars appear in action only with ∂µ

standard relation between factorization of S-matrix and
integrability was taken for granted but indeed appears to hold
(Nambu model is quantum-integrable only in critical dim)
corresponding 2d massless S-matrix was suggested as
useful tool in search for effective action of confining QCD string

• Here: clarify properties of tree-level massless S-matrix
in scale-inv 2d σ-models on standard integrable examples:
principal chiral model and models related by dualities
find non-zero particle production amplitudes and relate
to IR ambiguities in tree-level scattering of chiral 2d scalars



PCM and related models

LPCM = 1
λ2 tr

(
Jµ Jµ

)
, Jµ = g−1∂µg , g = eλXata

LPCM = − 1
2 ∂µXa∂µXa − 1

12 λ2 fab
e fcdeXaXc∂µXb∂µXd

+ 1
360 λ4 fabl fcm

l fdn
m feg

nXbXcXdXe∂µXa∂µXg + ...

add WZ term:

LPCMq = LPCM + qLWZ , (ηµν + q εµν)∂µ Jν = 0

• PCM is classically dual to ZM model [Zakharov, Mikhailov 73]

∂µ Jµ = 0 , Fµν(J) ≡ ∂µ Jν − ∂µ Jν + [Jµ, Jν] = 0

Jµ = λεµν∂νφ , �φa − 1
2 λ fbc

aεµν∂µφb∂νφc = 0

LZM = − 1
2 ∂µφa∂µφa + 1

3 λεµν fabc φa∂µφb∂νφc



σ-model with flat metric and constant B-strength (φa ≡ Xa)

L = − 1
2(Gabηµν + Babεµν)∂µXa∂νXb ,

Gab = δab , Bab = − 2
3 λ fabcXc , Habc = −2λ fabc

• similar “pseudodual” of PCMq: ZMq

Jµ = λ(εµν∂νφ− q ∂µφ) , �φa− 1
2 λ(1− q2) fbc

aεµν∂µφb∂νφc = 0

LZMq = − 1
2 ∂µφa∂µφa + 1

3(1− q2)λεµν fabc φa∂µφb∂νφc

free at WZW points q2 = 1
• PCMq is classically equivalent to ZMq model
but not equivalent at the quantum level:
e.g. 1-loop β-functions of PCM and ZM are opposite [Nappi 79]



• path integral dual of PCM: “non-abelian dual model” (NAD)
quantum equiv: same β-function [Fridling, Jevicki 84; Fradkin, AT 85]

L = 1
λ2 tr
[

Jµ Jµ + λεµν YFµν(J)
]

LNAD = − 1
2

[
ηµνδab − 2λεµν f ab

cY
c]−1

∂µYa∂νYb

= − 1
2 ∂µYa∂µYa−λεµν fabcYa∂µYb∂νYc−λ2 fac

h fbdhYcYd∂µYa∂µYb + ...

• three models are similar: global G symmetry: X → hXh−1

special cases of master Lagrangian

Lp,q(X) = − 1
2 ∂Xa∂Xa − 1

12 pλ2 fab
e fcdeXaXc∂µXb∂µXd

+ 1
3 qλεµν fabcXa∂µXb∂νXc +O(λ3)

PCMq ZMq NAD
p 1 0 12
q q 1− q2 − 3



• all models classically integrable: admit flat Lax connection

L+ = 1
2(1− q+ z

√
1− q2) J+ , L− = 1

2(1+ q+ z−1
√

1− q2) J−

∂− J+− ∂+ J−+ [J−, J+] = 0 , (1− q)∂− J+ + (1+ q)∂+ J− = 0

PCMq : J± = g−1∂±g

ZMq : same Lax with Jµ ≡ λ(εµν∂νφ− q∂µφ)

NAD: same Lax with Jµ = −λεµν(∂νY + [Jν, Y])



IR ambiguties in massless 2d tree amplitudes
• 2d the mass-shell k2 ≡ −k2

0 + k2
1 = 0 factorizes

k+k− = 0 , k± ≡ ±k0 + k1

k+ = 0 and k− = 0 (left- and right-moving)
• conservation of momentum: separate for left- and right-movers

∑
i

k(i)µ = 0 , ∑
j

l(j)
µ = 0 , k(i)+ = 0 , l(j)

− = 0

• implies two types of possible on-shell IR divergences:
when internal propagator blows up (u=internal momentum)

type 1: uµ = 0 ; type 2: u2 = 0 , uµ 6= 0

type 1: particles on sides of propagator of opposite chirality
type 2: particles on one side of propagator are of same chirality
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• classically scale invariant σ-models : Xn∂X∂X interactions
infinite propagator × vanishing vertex factor
possible 0

0 ambiguities V
u2 with V → 0 and u2 → 0

when external legs go on-shell
• one way to resolve: iε-regularization V

u2 → V
u2−iε

vanishing of V implies such 0
0 terms simply set to zero



• “massive regularization”: add m→ 0 for all fields
different from iε-regularization: mass shell conds modified

k(i)+ = 0 → k(i)+ = − m2

k(i)−
, l(j)

− = 0 → l(j)
− = − m2

l(j)
+

• type 1 terms vanish in iε-reg
V1(u)V2(u)

u2−iε → 0 as V1,2 → 0 as uµ → 0

and in massive reg: uµ, V1 and V2 are O(m2)
V1(u)V2(u)

u2+m2 = O(m2)O(m2)
O(m4)+m2 → 0

• ambiguities: potential issues with equivalence theorem,
preservation of (hidden) symmetries, T-duality, etc.



4-point scattering amplitudes

k
Xa Xb

k(1)

k(4)

k(3)

k(2)

Xa Xd

XcXb

k(2)

k(1)

k(3)

Xb

Xa Xc

compute tree-level scattering of massless scalars +− → +−

S[Xa(k+)Xb(l−)→ Xc(k+)Xd(l−)] = Acont + A(s)
exch + A(t)

exch + A(u)
exch

Acont = 1
24

1
3 ipλ2

(
f abm f cd

m + 2 f acm f bd
m + f adm f bc

m

)
k+l−

A(s)
exch = 1

24
i
2 (2iqλ)2( f ab

mεµνkµlν)
γmn

(k + l)2 ( f cd
nερσkρlσ) = − i

16 q2λ2 f abm f cd
m k+l−

A(u)
exch = 1

24
i
2 (2iqλ)2( f ad

mεµνkµlν)
γmn

(k− l)2 ( f bc
nερσlρkσ) = − i

16 q2λ2 f adm f bc
m k+l−



k+

k+

l−

l−

Xa Xc

XdXb

l−

k+

k + l

l−

k+

Xb

Xa

Xd

Xc

k+ k+

0

l− l−

Xa Xc

Xb Xd

k+ l−

k − l

l− k+

Xa Xd

Xb Xc

• t-channel: type 1 ambiguity = 0 in both iε- and massive reg

A(t)
exch

∣∣∣
uµ→0

= i
8 q2λ2 f acm f bd

m
(εµνkµuν)(ερσlρuσ)

u2 → 0



S[Xa(k+)Xb(l−)→ Xc(k+)Xd(l−)] = i
32 κ λ2 f acm f bd

m k+l−

PCMq ZMq NAD
κ ≡ p− q2 : 1− q2 − (1− q2)2 3

• +− → +− vanishes in WZW model (q2 = 1)
(cf. decoupling of left and right modes in classical eqs)
• classically dual PCMq and ZMq : different tree amplitudes
• path integral dual PCM and NAD: different tree amplitudes
• classical solutions are in one-to-one correspondence
(relations between integrable structures or Lax pairs)
but need not have equivalent massless S-matrices
tree-level S-matrix = action on solution with asymptotic b.c.
but classical actions not same



• also elementary scattering fields are non-locally related:
PCM vs. ZM: Jµ = e−λX∂µeλX → Jµ = λεµν∂νφ

PCM vs. NAD: Jµ = e−λX∂µeλX → Jµ = −λεµν(∂νY + [Jν, Y])
• different discrete symmetries: PCM is parity-inv
while ZM and NAD contain parity-odd interactions
→ different S-matrices

• still, relation between classical solutions suggests
some map between S-matrix elements
expected from off-shell duality of quantum correlators
in PCM and NAD: J → f (Y)∂Y
should also imply relations between
certain on-shell amplitudes



Higher-point amplitudes: particle production
• PCM, ZM and NAD (and SN coset) classically integrable
but their massless tree level S-matrices fail to factorize
and contain non-zero particle production amplitudes:
standard lore about factorization in integrable models
fails in massless case (earlier indications [Nappi 80; Figueirido 89])
• n > 4 amplitudes have both type 1 and 2 IR ambiguities
similar non-zero results in iε- and massive regs

2→ 4 amplitudes in PCM and SO(N + 1)/SO(N) model
• PCM for G = SU(2), fabc = εabc (a, b = 1, 2, 3)
particle-production: +− → −−−+ and +− → −−++

contact term from 6-vertex + exchanges with two 4-vertices



r+

v−

k−

l−

k− + l− + v−

r+

Xf

Xe

Xc

Xd

Xb

Xa

Xa
Xb

Xc

XdXf

Xe

r+ k− + l− + v−

v− k−
l−

v−

r+

Xa
Xb

Xc

XfXd

Xe

r+ k− + l− + v−

l + v − r k−
r+

v−

l−



S[Xa(r+)Xb(k− + l− + v−)→ Xc(k−)Xd(l−)Xe(v−)X f (r+)]

= i
16 λ4 r+

[
− k− l−(k−+l−+2v−)

(k−+v−)(l−+v−)
δabδcdδe f +

v−(l−−k−)(k−+l−+v−)
(k−+v−)(l−+v−)

δadδbeδc f

− (a↔ f )
]
+ (cycle k, c; l, d; v, e)

S[Xa(v+ + r+)Xb(k− + l−)→ Xc(k−)Xd(l−)Xe(v+)X f (r+)]

= − i
16 λ4

[
v+k−δa f δbdδce + (cycle k, c; l, d;−k− l, b)

]
+ (cycle v, e; r, f ;−r− v, a)

• same results for SN = SO(N + 1)/SO(N) model
(e.g. SU(2) PCM: SU(2) ∼ S3 ∼ SO(4)/SO(3))

LSN = − 1
2

[
(∂Xa)2 + (∂XN+1)2

]
= − 1

2

[
(∂Xa)2 +

λ2(Xa∂Xa)2

1− λ2(Xa)2

]



e.g. for (a, b, c, d, e, f ) = (1, 1, 2, 2, 2, 2)

S[X1(r+)X1(k− + l− + v−)→ X2(k−)X2(l−)X2(v−)X2(r+)]

= − i
16 λ4 r+(k− + l− + v−) ,

S[X1(r+ + v+)X1(k− + l−)→ X2(k−)X2(l−)X2(v+)X2(r+)]

= − i
16 λ4 (r+ + v+)(k− + l−)

2→ 3 amplitude in ZMq model
non-zero 5-point amplitude +− → +−−
exchanges with three 3-vertices and two internal propagators
outgoing particles with same a = d = e

S[Xb(r+)Xc(k−+ l−)→ Xa(r+)Xa(k−)Xa(l−)] = A(1)+ A(2)+ A(3)

A(1) – unambg.; A(2) – type 2; A(3) – type 1 and 2
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r+

k−

r − k k + l − r

k− + l−

r+

l−
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Xa
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r+
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• in massive regularization A(1) = A(2), A(3) = 0

S[Xb(r+)Xc(k− + l−)→ Xa(r+)Xa(k−)Xa(l−)]

= − i
64 λ3 (1− q2)3 f abd f ae

d f a
e
c r+(k− + l−)

e.g. in SU(2) case f abd f ae
d f a

e
c = 16εabc

non-zero except for q = ±1 when theory is free
• in iε-regularization (apparently used in [Nappi 80])
all ambiguous contributions resolved as zero:
A(2) = 0 = A(3) and thus Siε = A(1) = 1

2 Smass



2→ 3 amplitude in NAD model
+− → +−− in SU(2) case with outgoing a = d = e
3- and 4-vertices plus 5-point

L(5)NAD = − 1
2 λ3εµνεabcXdXdXa∂µXb∂νXc

using massive regularization:

S[Xb(r+)Xc(k− + l−)→ Xa(r+)Xa(k−)Xa(l−)]
= A3-v + Acont + Aunamb + Aamb

= − i
4 λ3εabcr+(k− + l−)

• happens to coincide with same amplitude in ZM model (?)
• PCM vs NAD: different coeff. at 4-point level,
no 5-point in PCM (parity-invariant) but non-zero one in NAD:
path integral duality does not imply equiv. of massless S-matrices
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Xb

Xa

Xc

XaXa

r+

r+

0
k− + l−

l−

k−



2→ 3 amplitude in PCMq

non-zero if WZ term present; in massive regularization

S[Xb(r+)Xc(k− + l−)→ Xa(r+)Xa(k−)Xa(l−)]

= − i
4 q(q2 − 1)λ3εabcr+(k− + l−)

• particle production at the 5-point level unless q 6= ±1
(massless S-matrix of WZW trivial: left/right decouple)
• in iε-reg (used in [Figueirido 89]) result is 1

2 of above



Massless S-matrix in doubled formalism
IR ambiguities in amplitudes of 2d chiral scalars:
may be alternative approach?
“doubled” sigma model: [AT 91; Roiban, AT 12]

treat left and right chiral scalars as independent off-shell fields
(relax off-shell 2d Lorentz inv)

Gmn∂µXm∂µXn + εµνBmn∂µXm∂νXn

= Gmn(ẊmẊn − X′mX′n)− BmnẊmX′n

L̂(X, X′, P) = PẊ− H(X, X′, P), Pn = ∂L
∂Ẋn → Pn = ∂1X̃n

doubled Lagrangian

L̂ = ẊnX̃′n− 1
2(Gmn− BmkGklBln)X′mX′n− 1

2 GmnX̃′mX̃′n + BmkGknX′mX̃′n

Ŝ(X, X̃) = 1
2

∫
d2σ
(
ΩI JẊIX′J −MI JX′IX′J

)
, XI = (Xm, X̃m)

Ω = (0, I; I, 0), M = (G− BG−1B; BG−1; −G−1B; G−1)



expand Gmn = δmn + Hmn(X) and introduce X±

Xm = Xm
+ + Xm

− , X̃m = Xm
+−Xm

− , Xm
± = 1

2(Xm± X̃m)

free action (∂± = ±∂0 + ∂1)

L̂0(X+, X−) = −∂1Xn
+∂−Xn

+ − ∂1Xn
−∂+Xn

− , ∂± = ±∂0 + ∂1

classical eqs: ∂1∂−X+ = 0→ ∂−X+ = 0

∂−Xn
+ = 0 , ∂+Xn

− = 0 , ∂∓Xn
±
∣∣∣
|σ|→∞

= 0

natural for scattering of chiral scalars

L̂ =− ∂1Xa
+∂−Xa

+ − ∂1Xa
−∂+Xa

−
− Hab(X)∂1Xa

+∂1Xb
− − Bab(X)∂1Xa

+∂1Xb
− +O(B2, H2, HB)

on-shell S-matrix for X+, X− is Lorentz invariant



• linear order in H, B: no “chiral” vertices with only X+ or X−
no type 1 or type 2 ambiguities in simple exchange diagrams
with just one internal line
• T-duality (2d scalar-scalar duality):
is manifest symmetry in doubled formulation
Example: G = 1 + λ2X2

L = − 1
2(∂X)2− 1

2 G(X)(∂Y)2 , L̃ = − 1
2(∂X)2− 1

2 G−1(X)(∂Ỹ)2

doubled Lagrangians are equivalent: Y ↔ Ỹ, G → G−1

L̂ = L̂0 − 1
2 G(X)(∂1Y)2 − 1

2 G−1(X)(∂1Ỹ)2

L̂0 ≡ 1
2

(
∂0X∂1X̃ + ∂1X∂0X̃ + ∂0Y∂1Ỹ + ∂1Y∂0Ỹ

)
in chiral basis Y± = 1

2(Y± Ỹ) symmetry is [Roiban, AT 12]

S̃ = (−1)n− S , Y+ → Y+ , Y− → −Y−, X → X

n−= number of Y− legs in amplitude



• compute PCM, etc., amplitudes in doubled formulation
++→ −− for “interpolating” Lagrangian Lp,q:
coefficient κ = p− 13

9 q2 instead of p− q2

in standard approach with massive regularization:
2→ 4 amplitude in SU(2) PCM: +− → −−−+ is same
but +− → −−++ is different by −5

4
•why different? related to type 1 ambigs in standard approach
reason: non-local field-dependent transformation
between fields in standard and doubled actions
(cf. ∂aY → εabG−1(X)∂bỸ in T-duality case):
effectively different ways of how IR ambiguities
appear and are resolved



Open questions:

• tree-level massless scattering – IR ambiguities
particle creation in integrable models:
cannot use massless S-matrix in search for
new integrable σ-models ?
•massive regularization and iε
break usual link to integrability but
could there be a prescription consistent with integrability?
•massless particle-production amplitudes that are
free from IR ambiguities vanish in integrable models?
• is it possible to relax standard factorization condition
into some modified criterion?
(cf. no particle creation in partial colour ordered amplitudes)


