On massless tree-level S-matrix

in 2d sigma models

Arkady Tseytlin

B. Hoare, N. Levine, AT arXiv:1812.02549
scattering of on-shell 2d massless scalars (left/right): analog of 4 d gauge vector scattering

- motivation: search for integrable σ-models exact solution for strings in curved backgrounds integrable deformations of AdS/CFT
(recent examples: $\beta, \gamma, \eta, \lambda, \ldots$)
- classical integrability: existence of Lax representation for e.o.m. search for Lax pair is generally hard (other attempts: stability under RG flow; reduction to 1d and check for absence of chaotic behaviour - inconclusive)
- standard lore in massive 2d models: [Arefieva, Korepin 74; Parke 80] integrability \leftrightarrow no particle production and factorization of S-matrix (\rightarrow Yang-Baxter equation)
- S-matrix as guide to integrability for massless 2d theories?
- σ-model near trivial vacuum: massless scalar excitations

$$
\begin{aligned}
L & =\left(G_{m n}+B_{m n}\right) \partial_{+} x^{m} \partial_{-} x^{n} \\
& =\left(\delta_{m n}+h_{m n k} x^{k}+c_{m n k l} x^{k} x^{l}+\ldots\right) \partial_{+} x^{m} \partial_{-} x^{n}
\end{aligned}
$$

constraints on coeffs \rightarrow geometry of integrable models from no particle production/factorization of massless S-matrix?

- No: well-known integrable σ-models have massless particle production
- link to integrability is preserved if expand near non-trivial vacua with only massive excitations
- example: start with massive integrable 2 d model
$\mathcal{L}=\partial_{+} x^{n} \partial_{-} x^{n}-V(x), \quad V=\frac{1}{2} m^{2} x^{2}+g x^{3}+\ldots$ associated "pp-wave" σ-model : add "light-cone" directions
$\hat{\mathcal{L}}=\partial_{+} u \partial_{-} v+\partial_{+} x^{n} \partial_{-} x^{n}-V(x) \partial_{+} u \partial_{-} u, \quad u, v=y \pm t$
- near trivial vac $u=v=x=0$: amplitudes for massless x-excitations and even no. of u-excitations may not factorize - but in "light-cone" vac $u=\tau,(v, x=0)$: x are massive resulting S-matrix factorizes for an integrable potential V - similar: expand near BMN geodesic in $A d S_{n} \times S^{n}$ but breaks 2d Lorentz symmetry [Klose, McLoughlin, Roiban, Zarembo 06]
- massless S-matrix in 2d usually considered as suspect standard interpretation may not apply - particles in 1d direction do not separate asymptotically also: IR divergences at quantum level "no Goldstone bosons in 2d" [Coleman 73] [still: massless S-matrices were formally discussed in context of finite-density TBA [Zamolodchikov, Zamolodchikov 92] S-matrix: relative phase if one particle is moved past another]
- one can certainly define massless S-matrix at tree level e.g., from classical action on solution with scattering b.c.: should resulting massless S-matrix reflect classical (non-)integrability? if yes then how? [seems likely: standard defn of classical integrability via Lax pair makes no distinction between massless and massive cases, does not depend on expansion point]
- early indications that connection between integrability and no particle production / factorization does not apply in massless scale-inv case: non-zero 5-point tree amplitude in Zakharov-Mikhailov model (classical dual of PCM) [Nappi 80] tree particle production claimed in PCM and S^{N} [Figueirido 89]
- if true, demanding factorization of tree-level S-matrix may not be necessary for integrability of classical scale-invariant 2 d models with massless excitations
- aim: check and clarify why massless S-matrix exhibits this tree-level "anomaly of integrability" (role of IR ambiguities)
- massless case remains little known and controversial; may be in massless integrable case one may relax/modify condition of no particle production? (cf. [Wulff 18])
- recent work [Gabai,Mazac, Shieber,Vieira, Zhou 18]: hermitian matrix massless fields with 2-derivative interactions alternative definition of no particle production for partial colour-ordered amplitudes as opposed to full amplitudes was claimed to lead directly to action of integrable $U(n)$ PCM; but unclear how to generalize this to other integrable σ-models that do not have notion of colour-ordered amplitudes
- massless 2d S-matrices were discussed in non scale invariant flat string Nambu-like models $L(\partial \phi)$ [Duvovsky,Flauger,Gorbenko 12] no IR divergences if scalars appear in action only with ∂_{μ} standard relation between factorization of S-matrix and integrability was taken for granted but indeed appears to hold (Nambu model is quantum-integrable only in critical dim) corresponding 2 d massless S-matrix was suggested as useful tool in search for effective action of confining QCD string
- Here: clarify properties of tree-level massless S-matrix in scale-inv 2d σ-models on standard integrable examples: principal chiral model and models related by dualities find non-zero particle production amplitudes and relate to IR ambiguities in tree-level scattering of chiral 2d scalars

PCM and related models

$$
\begin{aligned}
\mathcal{L}_{\mathrm{PCM}}= & \frac{1}{\lambda^{2}} \operatorname{tr}\left(J^{\mu} J_{\mu}\right), \quad J_{\mu}=g^{-1} \partial_{\mu} g, \quad g=e^{\lambda X^{a} t_{a}} \\
\mathcal{L}_{\mathrm{PCM}}= & -\frac{1}{2} \partial_{\mu} X^{a} \partial^{\mu} X^{a}-\frac{1}{12} \lambda^{2} f_{a b}{ }^{e} f_{c d e} X^{a} X^{c} \partial_{\mu} X^{b} \partial^{\mu} X^{d} \\
& +\frac{1}{300} \lambda^{4} f_{a b l} f_{c m}{ }^{l} f_{d n}{ }^{m} f_{e g}{ }^{n} X^{b} X^{c} X^{d} X^{e} \partial_{\mu} X^{a} \partial^{\mu} X^{g}+\ldots
\end{aligned}
$$

add WZ term:

$$
\mathcal{L}_{\mathrm{PCM}_{q}}=\mathcal{L}_{\mathrm{PCM}}+q \mathcal{L}_{\mathrm{WZ}}, \quad\left(\eta^{\mu v}+q \epsilon^{\mu v}\right) \partial_{\mu} J_{v}=0
$$

- PCM is classically dual to ZM model [Zakharov, Mikhailov 73]

$$
\begin{gathered}
\partial_{\mu} J^{\mu}=0, \quad F_{\mu v}(J) \equiv \partial_{\mu} J_{v}-\partial_{\mu} J_{v}+\left[J_{\mu}, J_{v}\right]=0 \\
J^{\mu}=\lambda \epsilon^{\mu v} \partial_{\nu} \phi, \quad \square \phi^{a}-\frac{1}{2} \lambda f_{b c}{ }^{a} \epsilon^{\mu v} \partial_{\mu} \phi^{b} \partial_{\nu} \phi^{c}=0 \\
\mathcal{L}_{\mathrm{ZM}}=-\frac{1}{2} \partial^{\mu} \phi^{a} \partial_{\mu} \phi^{a}+\frac{1}{3} \lambda e^{\mu v} f_{a b c} \phi^{a} \partial_{\mu} \phi^{b} \partial_{\nu} \phi^{c}
\end{gathered}
$$

σ-model with flat metric and constant B-strength $\left(\phi^{a} \equiv X^{a}\right)$

$$
\begin{aligned}
& \mathcal{L}=-\frac{1}{2}\left(G_{a b} \eta^{\mu \nu}+B_{a b} \epsilon^{\mu \nu}\right) \partial_{\mu} X^{a} \partial_{\nu} X^{b}, \\
& G_{a b}=\delta_{a b}, \quad B_{a b}=-\frac{2}{3} \lambda f_{a b c} X^{c}, \quad H_{a b c}=-2 \lambda f_{a b c}
\end{aligned}
$$

- similar "pseudodual" of $\mathrm{PCM}_{q}: \mathrm{ZM}_{q}$

$$
\begin{gathered}
J^{\mu}=\lambda\left(\epsilon^{\mu v} \partial_{\nu} \phi-q \partial^{\mu} \phi\right), \quad \square \phi^{a}-\frac{1}{2} \lambda\left(1-q^{2}\right) f_{b c}{ }^{a} \epsilon^{\mu v} \partial_{\mu} \phi^{b} \partial_{\nu} \phi^{c}=0 \\
\mathcal{L}_{\mathrm{ZM}_{q}}=-\frac{1}{2} \partial^{\mu} \phi^{a} \partial_{\mu} \phi^{a}+\frac{1}{3}\left(1-q^{2}\right) \lambda \epsilon^{\mu v} f_{a b c} \phi^{a} \partial_{\mu} \phi^{b} \partial_{\nu} \phi^{c}
\end{gathered}
$$

free at WZW points $q^{2}=1$

- PCM_{q} is classically equivalent to ZM_{q} model but not equivalent at the quantum level:
e.g. 1-loop β-functions of PCM and ZM are opposite [Nappi 79]
- path integral dual of PCM: "non-abelian dual model" (NAD) quantum equiv: same β-function [Fridling, Jevicki 84; Fradkin, AT 85]

$$
\begin{gathered}
\mathcal{L}=\frac{1}{\lambda^{2}} \operatorname{tr}\left[J^{\mu} J_{\mu}+\lambda \epsilon^{\mu v} Y F_{\mu \nu}(J)\right] \\
\mathcal{L}_{\mathrm{NAD}}=-\frac{1}{2}\left[\eta_{\mu \nu} \delta^{a b}-2 \lambda \epsilon_{\mu \nu} f^{a b}{ }_{c} Y^{c}\right]^{-1} \partial_{\mu} Y^{a} \partial_{\nu} Y^{b} \\
=-\frac{1}{2} \partial_{\mu} Y^{a} \partial^{\mu} Y^{a}-\lambda \epsilon^{\mu v} f_{a b c} Y^{a} \partial_{\mu} Y^{b} \partial_{\nu} Y^{c}-\lambda^{2} f_{a c}{ }^{h} f_{b d h} Y^{c} Y^{d} \partial_{\mu} Y^{a} \partial^{\mu} Y^{b}+\ldots
\end{gathered}
$$

- three models are similar: global G symmetry: $X \rightarrow h X h^{-1}$ special cases of master Lagrangian

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{p}, \mathrm{q}}(X)=-\frac{1}{2} \partial X^{a} \partial X^{a}-\frac{1}{12} \mathrm{p} \lambda^{2} f_{a b}{ }^{e} f_{c d e} X^{a} X^{c} \partial_{\mu} X^{b} \partial^{\mu} X^{d} \\
& +\frac{1}{3} q \lambda \epsilon^{\mu \nu} f_{a b c} X^{a} \partial_{\mu} X^{b} \partial_{\nu} X^{c}+\mathcal{O}\left(\lambda^{3}\right) \\
& \begin{array}{lllc}
& \mathrm{PCM}_{q} & \mathrm{ZM}_{q} & \mathrm{NAD} \\
\mathrm{p} & 1 & 0 & 12 \\
\mathrm{q} & q & 1-q^{2} & -3
\end{array}
\end{aligned}
$$

- all models classically integrable: admit flat Lax connection

$$
\begin{array}{ll}
L_{+}=\frac{1}{2}\left(1-q+z \sqrt{1-q^{2}}\right) J_{+}, & L_{-}=\frac{1}{2}\left(1+q+z^{-1} \sqrt{1-q^{2}}\right) J_{-} \\
\partial_{-} J_{+}-\partial_{+} J_{-}+\left[J_{-}, J_{+}\right]=0, & (1-q) \partial_{-} J_{+}+(1+q) \partial_{+} J_{-}=0
\end{array}
$$

$\mathrm{PCM}_{q}: \quad J_{ \pm}=g^{-1} \partial_{ \pm} g$
ZM_{q} : same Lax with $J_{\mu} \equiv \lambda\left(\epsilon_{\mu \nu} \partial^{v} \phi-q \partial_{\mu} \phi\right)$

NAD: same Lax with $J^{\mu}=-\lambda \epsilon^{\mu \nu}\left(\partial_{v} Y+\left[J_{v}, Y\right]\right)$

IR ambiguties in massless 2d tree amplitudes

- 2d the mass-shell $k^{2} \equiv-k_{0}^{2}+k_{1}^{2}=0$ factorizes

$$
k_{+} k_{-}=0, \quad k_{ \pm} \equiv \pm k_{0}+k_{1}
$$

$k_{+}=0$ and $k_{-}=0$ (left- and right-moving)

- conservation of momentum: separate for left- and right-movers

$$
\sum_{i} k_{\mu}^{(i)}=0, \quad \sum_{j} l_{\mu}^{(j)}=0, \quad k_{+}^{(i)}=0, l_{-}^{(j)}=0
$$

- implies two types of possible on-shell IR divergences: when internal propagator blows up ($u=$ internal momentum)

$$
\text { type 1: } \mathrm{u}_{\mu}=0 ; \quad \text { type 2: } \mathrm{u}^{2}=0, \mathrm{u}_{\mu} \neq 0
$$

type 1: particles on sides of propagator of opposite chirality type 2: particles on one side of propagator are of same chirality

- classically scale invariant σ-models : $X^{n} \partial X \partial X$ interactions infinite propagator \times vanishing vertex factor possible $\frac{0}{0}$ ambiguities $\frac{V}{\mathrm{u}^{2}}$ with $V \rightarrow 0$ and $\mathrm{u}^{2} \rightarrow 0$ when external legs go on-shell
- one way to resolve: $i \epsilon$-regularization $\frac{V}{\mathrm{u}^{2}} \rightarrow \frac{V}{\mathrm{u}^{2}-i \epsilon}$ vanishing of V implies such $\frac{0}{0}$ terms simply set to zero
- "massive regularization": add $m \rightarrow 0$ for all fields different from $i \epsilon$-regularization: mass shell conds modified

$$
k_{+}^{(i)}=0 \rightarrow k_{+}^{(i)}=-\frac{m^{2}}{k_{-}^{(i)}}, \quad l_{-}^{(j)}=0 \quad l_{-}^{(j)}=-\frac{m^{2}}{l_{+}^{(j)}}
$$

- type 1 terms vanish in $i \epsilon$-reg $\frac{V_{1}(\mathrm{u}) V_{2}(\mathrm{u})}{\mathrm{u}^{2}-i \epsilon} \rightarrow 0$ as $V_{1,2} \rightarrow 0$ as $\mathrm{u}_{\mu} \rightarrow 0$ and in massive reg: \mathbf{u}_{μ}, V_{1} and V_{2} are $\mathcal{O}\left(m^{2}\right)$

$$
\frac{V_{1}(\mathbf{u}) V_{2}(\mathbf{u})}{\mathbf{u}^{2}+m^{2}}=\frac{\mathcal{O}\left(m^{2}\right) \mathcal{O}\left(m^{2}\right)}{\mathcal{O}\left(m^{4}\right)+m^{2}} \rightarrow 0
$$

- ambiguities: potential issues with equivalence theorem, preservation of (hidden) symmetries, T-duality, etc.

4-point scattering amplitudes

compute tree-level scattering of massless scalars $+-\rightarrow+-$

$$
S\left[X^{a}\left(k_{+}\right) X^{b}\left(l_{-}\right) \rightarrow X^{c}\left(k_{+}\right) X^{d}\left(l_{-}\right)\right]=A_{\mathrm{cont}}+A_{\mathrm{exch}}^{(\mathrm{s})}+A_{\mathrm{exch}}^{(\mathrm{t})}+A_{\mathrm{exch}}^{(\mathrm{u})}
$$

$$
A_{\text {cont }}=\frac{1}{2^{4} \frac{1}{3}} i \mathrm{p} \lambda^{2}\left(f^{a b m} f_{m}^{c d}+2 f^{a c m} f^{b d}{ }_{m}+f^{a d m} f^{b c}{ }_{m}\right) k_{+} l_{-}
$$

$$
A_{\text {exch }}^{(\mathrm{s})}=\frac{1}{2^{4} \frac{i}{2}}(2 i q \lambda)^{2}\left(f^{a b}{ }_{m} \epsilon_{\mu v} k^{\mu} l^{\nu}\right) \frac{\gamma^{m n}}{(k+l)^{2}}\left(f^{c d}{ }_{n} \epsilon_{\rho \sigma} k^{\rho} l^{\sigma}\right)=-\frac{i}{16} q^{2} \lambda^{2} f^{a b m} f^{c d}{ }_{m} k_{+} l_{-}
$$

$$
A_{\mathrm{exch}}^{(\mathrm{u})}=\frac{1}{2^{\frac{1}{2}} \frac{i}{2}}(2 i \mathrm{q} \lambda)^{2}\left(f^{a d}{ }_{m} \epsilon_{\mu v} k^{\mu} l^{\nu}\right) \frac{\gamma^{m n}}{(k-l)^{2}}\left(f^{b c}{ }_{n} \epsilon_{\rho \sigma} l^{\rho} k^{\sigma}\right)=-\frac{i}{16} \mathrm{q}^{2} \lambda^{2} f^{a d m} f^{b c}{ }_{m} k_{+} l_{-}
$$

- t-channel: type 1 ambiguity $=0$ in both $i \epsilon$ - and massive reg

$$
\left.A_{\mathrm{exch}}^{(\mathrm{t})}\right|_{\mathbf{u}_{\mu \rightarrow 0}}=\frac{i}{8} \mathrm{q}^{2} \lambda^{2} f^{a c m} f^{b d}{ }_{m} \frac{\left(\epsilon_{\mu v} \mathrm{k}^{\mu} \mathbf{u}^{v}\right)\left(\epsilon_{\rho \sigma} l^{\rho} \mathbf{u}^{\sigma}\right)}{\mathbf{u}^{2}} \rightarrow 0
$$

$$
\begin{array}{rcc}
& S\left[X^{a}\left(k_{+}\right) X^{b}\left(l_{-}\right) \rightarrow X^{c}\left(k_{+}\right) X^{d}\left(l_{-}\right)\right]=\frac{i}{32} \kappa \lambda^{2} f^{a c m} f_{m}^{b d} k_{+} l_{-} \\
& \mathrm{PCM}_{q} & \mathrm{ZM}_{q}
\end{array}
$$

$\bullet+-\rightarrow+-$ vanishes in WZW model $\left(q^{2}=1\right)$
(cf. decoupling of left and right modes in classical eqs)

- classically dual PCM_{q} and ZM_{q} : different tree amplitudes
- path integral dual PCM and NAD: different tree amplitudes
- classical solutions are in one-to-one correspondence (relations between integrable structures or Lax pairs) but need not have equivalent massless S-matrices tree-level S-matrix = action on solution with asymptotic b.c. but classical actions not same
- also elementary scattering fields are non-locally related:

PCM vs. ZM: $\quad J_{\mu}=e^{-\lambda X} \partial_{\mu} e^{\lambda X} \rightarrow J^{\mu}=\lambda \epsilon^{\mu \nu} \partial_{\nu} \phi$
PCM vs. NAD: $J_{\mu}=e^{-\lambda X} \partial_{\mu} e^{\lambda X} \rightarrow J^{\mu}=-\lambda \epsilon^{\mu \nu}\left(\partial_{\nu} Y+\left[J_{\nu}, Y\right]\right)$

- different discrete symmetries: PCM is parity-inv while ZM and NAD contain parity-odd interactions
\rightarrow different S-matrices
- still, relation between classical solutions suggests some map between S-matrix elements expected from off-shell duality of quantum correlators in PCM and NAD: $J \rightarrow f(Y) \partial Y$
should also imply relations between certain on-shell amplitudes

Higher-point amplitudes: particle production

- PCM, ZM and NAD (and S^{N} coset) classically integrable but their massless tree level S-matrices fail to factorize and contain non-zero particle production amplitudes: standard lore about factorization in integrable models fails in massless case (earlier indications [Nappi 80; Figueirido 89])
- $n>4$ amplitudes have both type 1 and 2 IR ambiguities similar non-zero results in $i \epsilon$ - and massive regs
$2 \rightarrow 4$ amplitudes in PCM and $S O(N+1) / S O(N)$ model
- PCM for $G=S U(2), f_{a b c}=\epsilon_{a b c}(a, b=1,2,3)$ particle-production: $+-\rightarrow---+$ and $+-\rightarrow--++$ contact term from 6-vertex + exchanges with two 4 -vertices

$$
\begin{aligned}
& S\left[X^{a}\left(r_{+}\right) X^{b}\left(k_{-}+l_{-}+v_{-}\right) \rightarrow X^{c}\left(k_{-}\right) X^{d}\left(l_{-}\right) X^{e}\left(v_{-}\right) X^{f}\left(r_{+}\right)\right] \\
& =\frac{i}{16} \lambda^{4} r_{+}\left[-\frac{k_{-}-\left(k_{-}+l-+2 v_{-}\right)}{\left(k_{-}+v_{-}\right)\left(l_{+}+v_{-}\right)} \delta_{a b} \delta_{c d} \delta_{e f}+\frac{v_{-}\left(l_{-}-k_{-}\right)\left(k_{-}+l_{-+} v_{-}\right.}{\left(k_{-}+v_{-}\right)\left(l_{-}+v_{-}\right)} \delta_{a d} \delta_{b e} \delta_{c f}\right. \\
& -(a \leftrightarrow f)]+(\text { cycle } k, c ; l, d ; v, e) \\
& S\left[X^{a}\left(v_{+}+r_{+}\right) X^{b}\left(k_{-}+l_{-}\right) \rightarrow X^{c}\left(k_{-}\right) X^{d}\left(l_{-}\right) X^{e}\left(v_{+}\right) X^{f}\left(r_{+}\right)\right] \\
& =-\frac{i}{16} \lambda^{4}\left[v_{+} k_{-} \delta_{a f} \delta_{b d} \delta_{c e}+(\text { cycle } k, c ; l, d ;-k-l, b)\right]+(\text { cycle } v, e ; r, f ;-
\end{aligned}
$$

- same results for $S^{N}=S O(N+1) / S O(N)$ model
(e.g. $\operatorname{SU}(2) \mathrm{PCM}: S U(2) \sim S^{3} \sim S O(4) / S O(3)$)
$\mathcal{L}_{S^{N}}=-\frac{1}{2}\left[\left(\partial X^{a}\right)^{2}+\left(\partial X^{N+1}\right)^{2}\right]=-\frac{1}{2}\left[\left(\partial X^{a}\right)^{2}+\frac{\lambda^{2}\left(X^{a} \partial X^{a}\right)^{2}}{1-\lambda^{2}\left(X^{a}\right)^{2}}\right]$
e.g. for $(a, b, c, d, e, f)=(1,1,2,2,2,2)$

$$
\begin{aligned}
& S\left[X^{1}\left(r_{+}\right) X^{1}\left(k_{-}+l_{-}+v_{-}\right) \rightarrow X^{2}\left(k_{-}\right) X^{2}\left(l_{-}\right) X^{2}\left(v_{-}\right) X^{2}\left(r_{+}\right)\right] \\
& =-\frac{i}{16} \lambda^{4} r_{+}\left(k_{-}+l_{-}+v_{-}\right), \\
& S\left[X^{1}\left(r_{+}+v_{+}\right) X^{1}\left(k_{-}+l_{-}\right) \rightarrow X^{2}\left(k_{-}\right) X^{2}\left(l_{-}\right) X^{2}\left(v_{+}\right) X^{2}\left(r_{+}\right)\right] \\
& =-\frac{i}{16} \lambda^{4}\left(r_{+}+v_{+}\right)\left(k_{-}+l_{-}\right)
\end{aligned}
$$

$2 \rightarrow 3$ amplitude in ZM_{q} model
non-zero 5-point amplitude $+-\rightarrow+--$
exchanges with three 3-vertices and two internal propagators outgoing particles with same $a=d=e$
$S\left[X^{b}\left(r_{+}\right) X^{c}\left(k_{-}+l_{-}\right) \rightarrow X^{a}\left(r_{+}\right) X^{a}\left(k_{-}\right) X^{a}\left(l_{-}\right)\right]=A^{(1)}+A^{(2)}+A^{(3)}$
$A^{(1)}$ - unambg.; $A^{(2)}$ - type 2; $A^{(3)}$ - type 1 and 2

- in massive regularization $A^{(1)}=A^{(2)}, A^{(3)}=0$

$$
\begin{aligned}
& S\left[X^{b}\left(r_{+}\right) X^{c}\left(k_{-}+l_{-}\right) \rightarrow X^{a}\left(r_{+}\right) X^{a}\left(k_{-}\right) X^{a}\left(l_{-}\right)\right] \\
& \quad=-\frac{i}{64} \lambda^{3}\left(1-q^{2}\right)^{3} f^{a b d} f_{d}^{a e} f_{e}^{a}{ }_{e}^{c} r_{+}\left(k_{-}+l_{-}\right)
\end{aligned}
$$

e.g. in $\operatorname{SU}(2)$ case $f^{a b d} f^{a e}{ }_{d} f^{a}{ }_{e}{ }^{c}=16 \epsilon^{a b c}$
non-zero except for $q= \pm 1$ when theory is free

- in $i \epsilon$-regularization (apparently used in [Nappi 80]) all ambiguous contributions resolved as zero: $A^{(2)}=0=A^{(3)}$ and thus $S_{i \epsilon}=A^{(1)}=\frac{1}{2} S_{\text {mass }}$
$2 \rightarrow 3$ amplitude in NAD model
$+-\rightarrow+--\operatorname{in} \operatorname{SU}(2)$ case with outgoing $a=d=e$
3 - and 4-vertices plus 5-point

$$
\mathcal{L}_{\mathrm{NAD}}^{(5)}=-\frac{1}{2} \lambda^{3} \epsilon^{\mu v} \epsilon_{a b c} X^{d} X^{d} X^{a} \partial_{\mu} X^{b} \partial_{\nu} X^{c}
$$

using massive regularization:

$$
\begin{gathered}
S\left[X^{b}\left(r_{+}\right) X^{c}\left(k_{-}+l_{-}\right) \rightarrow X^{a}\left(r_{+}\right) X^{a}\left(k_{-}\right) X^{a}\left(l_{-}\right)\right] \\
=A_{3-\mathrm{v}}+A_{\mathrm{cont}}+A_{\mathrm{unamb}}+A_{\mathrm{amb}} \\
=-\frac{i}{4} \lambda^{3} \epsilon^{a b c} r_{+}\left(k_{-}+l_{-}\right)
\end{gathered}
$$

- happens to coincide with same amplitude in ZM model (?)
- PCM vs NAD: different coeff. at 4-point level, no 5-point in PCM (parity-invariant) but non-zero one in NAD: path integral duality does not imply equiv. of massless S-matrices

$2 \rightarrow 3$ amplitude in PCM_{q} non-zero if WZ term present; in massive regularization

$$
\begin{gathered}
S\left[X^{b}\left(r_{+}\right) X^{c}\left(k_{-}+l_{-}\right) \rightarrow X^{a}\left(r_{+}\right) X^{a}\left(k_{-}\right) X^{a}\left(l_{-}\right)\right] \\
=-\frac{i}{4} q\left(q^{2}-1\right) \lambda^{3} \epsilon_{a b c} r_{+}\left(k_{-}+l_{-}\right)
\end{gathered}
$$

- particle production at the 5-point level unless $q \neq \pm 1$ (massless S-matrix of WZW trivial: left/right decouple)
- in $i \epsilon$-reg (used in [Figueirido 89]) result is $\frac{1}{2}$ of above

Massless S-matrix in doubled formalism

IR ambiguities in amplitudes of 2 d chiral scalars:
may be alternative approach?
"doubled" sigma model: [AT 91; Roiban, AT 12]
treat left and right chiral scalars as independent off-shell fields (relax off-shell 2d Lorentz inv)

$$
\begin{aligned}
& G_{m n} \partial^{\mu} X^{m} \partial_{\mu} X^{n}+\epsilon^{\mu \nu} B_{m n} \partial_{\mu} X^{m} \partial_{v} X^{n} \\
& =G_{m n}\left(\dot{X}^{m} \dot{X}^{n}-X^{\prime m} X^{\prime n}\right)-B_{m n} \dot{X}^{m} X^{\prime n}
\end{aligned}
$$

$\hat{\mathcal{L}}\left(X, X^{\prime}, P\right)=P \dot{X}-H\left(X, X^{\prime}, P\right), P_{n}=\frac{\partial \mathcal{L}}{\partial \dot{X}^{n}} \rightarrow P_{n}=\partial_{1} \tilde{X}_{n}$
doubled Lagrangian
$\hat{\mathcal{L}}=\dot{X}^{n} \tilde{X}_{n}^{\prime}-\frac{1}{2}\left(G_{m n}-B_{m k} G^{k l} B_{l n}\right) X^{\prime m} X^{\prime n}-\frac{1}{2} G^{m n} \tilde{X}_{m}^{\prime} \tilde{X}_{n}^{\prime}+B_{m k} G^{k n} X^{\prime m} \tilde{X}_{n}^{\prime}$
$\hat{S}(X, \tilde{X})=\frac{1}{2} \int d^{2} \sigma\left(\Omega_{I J} \dot{X}^{I} X^{\prime J}-M_{I J} X^{\prime I} X^{\prime J}\right), \quad X^{I}=\left(X^{m}, \tilde{X}^{m}\right)$
$\Omega=(0, I ; I, 0), \quad M=\left(G-B G^{-1} B ; B G^{-1} ;-G^{-1} B ; G^{-1}\right)$
expand $G_{m n}=\delta_{m n}+H_{m n}(X)$ and introduce $X_{ \pm}$
$X^{m}=X_{+}^{m}+X_{-}^{m}, \quad \tilde{X}^{m}=X_{+}^{m}-X_{-}^{m}, \quad X_{ \pm}^{m}=\frac{1}{2}\left(X^{m} \pm \tilde{X}^{m}\right)$
free action $\left(\partial_{ \pm}= \pm \partial_{0}+\partial_{1}\right)$
$\hat{\mathcal{L}}_{0}\left(X_{+}, X_{-}\right)=-\partial_{1} X_{+}^{n} \partial_{-} X_{+}^{n}-\partial_{1} X_{-}^{n} \partial_{+} X_{-}^{n}, \quad \partial_{ \pm}= \pm \partial_{0}+\partial_{1}$
classical eqs: $\partial_{1} \partial_{-} X_{+}=0 \rightarrow \partial_{-} X_{+}=0$

$$
\partial_{-} X_{+}^{n}=0, \quad \partial_{+} X_{-}^{n}=0,\left.\quad \partial_{\mp} X_{ \pm}^{n}\right|_{|\sigma| \rightarrow \infty}=0
$$

natural for scattering of chiral scalars

$$
\begin{aligned}
\hat{\mathcal{L}}= & -\partial_{1} X_{+}^{a} \partial_{-} X_{+}^{a}-\partial_{1} X_{-}^{a} \partial_{+} X_{-}^{a} \\
& -H_{a b}(X) \partial_{1} X_{+}^{a} \partial_{1} X_{-}^{b}-B_{a b}(X) \partial_{1} X_{+}^{a} \partial_{1} X_{-}^{b}+\mathcal{O}\left(B^{2}, H^{2}, H B\right)
\end{aligned}
$$

on-shell S-matrix for X_{+}, X_{-}is Lorentz invariant

- linear order in H, B : no "chiral" vertices with only X_{+}or X_{-} no type 1 or type 2 ambiguities in simple exchange diagrams with just one internal line
- T-duality (2d scalar-scalar duality):
is manifest symmetry in doubled formulation
Example: $G=1+\lambda^{2} X^{2}$
$\mathcal{L}=-\frac{1}{2}(\partial X)^{2}-\frac{1}{2} G(X)(\partial Y)^{2}, \quad \tilde{\mathcal{L}}=-\frac{1}{2}(\partial X)^{2}-\frac{1}{2} G^{-1}(X)(\partial \tilde{Y})^{2}$ doubled Lagrangians are equivalent: $Y \leftrightarrow \tilde{Y}, G \rightarrow G^{-1}$

$$
\begin{aligned}
\hat{\mathcal{L}} & =\hat{\mathcal{L}}_{0}-\frac{1}{2} G(X)\left(\partial_{1} Y\right)^{2}-\frac{1}{2} G^{-1}(X)\left(\partial_{1} \tilde{Y}\right)^{2} \\
\hat{\mathcal{L}}_{0} & \equiv \frac{1}{2}\left(\partial_{0} X \partial_{1} \tilde{X}+\partial_{1} X \partial_{0} \tilde{X}+\partial_{0} Y \partial_{1} \tilde{Y}+\partial_{1} Y \partial_{0} \tilde{Y}\right)
\end{aligned}
$$

in chiral basis $Y_{ \pm}=\frac{1}{2}(Y \pm \tilde{Y})$ symmetry is [Roiban, AT 12]

$$
\tilde{S}=(-1)^{n_{-}} S, \quad Y_{+} \rightarrow Y_{+}, \quad Y_{-} \rightarrow-Y_{-}, \quad X \rightarrow X
$$

$n_{-}=$number of Y_{-}legs in amplitude

- compute PCM, etc., amplitudes in doubled formulation $++\rightarrow--$ for "interpolating" Lagrangian $\mathcal{L}_{\mathrm{p}, \mathrm{q}}$:
coefficient $\kappa=p-\frac{13}{9} q^{2}$ instead of $p-q^{2}$ in standard approach with massive regularization: $2 \rightarrow 4$ amplitude in $S U(2)$ PCM: $+-\rightarrow---+$ is same but $+-\rightarrow--++$ is different by $-\frac{5}{4}$
- why different? related to type 1 ambigs in standard approach reason: non-local field-dependent transformation between fields in standard and doubled actions (cf. $\partial_{a} Y \rightarrow \epsilon_{a b} G^{-1}(X) \partial^{b} \tilde{Y}$ in T-duality case): effectively different ways of how IR ambiguities appear and are resolved

Open questions:

- tree-level massless scattering - IR ambiguities particle creation in integrable models: cannot use massless S-matrix in search for new integrable σ-models?
- massive regularization and $i \epsilon$ break usual link to integrability but could there be a prescription consistent with integrability?
- massless particle-production amplitudes that are free from IR ambiguities vanish in integrable models?
- is it possible to relax standard factorization condition into some modified criterion?
(cf. no particle creation in partial colour ordered amplitudes)

