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Basics of Spin in Gravity Handle with Kerr

Consider Kerr as Particle

Mass + Spin =
The 2 unique features of black holes in nature.

sevivon

Crucial to consider the rotating black hole case:

For black holes each higher post-Newtonian
correction significantly affects the accuracy
of the theoretical modeling of GW signal

For rapidly rotating/near-extremal Kerr
black holes corrections due to spin enter as
low as the 1.5PN order [nPN≡ (v/c)2n]

Can we give an effective description of a rotating black hole?
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Basics of Spin in Gravity Handle with Kerr

Where is our center?

Spin is FAT:

Special Relativity already requires a minimal finite measure, S/Mc ,
for the rotational velocity not to exceed the speed limit!

Also in General Relativity, where this is the ring singularity of Kerr

In Newtonian physics a unique notion of
a center, with the 3 nice properties:

1 3-vector

2 Forms canonical pair together with
the total momentum

3 Center of spatial mass distribution

No unique ‘center’ in relativistic physics!

Fleming 1965
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Basics of Spin in Gravity DOFs and symmetries

Degrees of freedom

1 Gravitational field

The metric gµν(x)
The tetrad field ηab ẽa

µ(x)ẽb
ν(x) = gµν(x)

2 Particle coordinate

yµ(σ) a function of an arbitrary affine parameter σ

Particle worldline position does not in general coincide with object’s ‘center’

3 Particle rotational DOFs

Worldline tetrad, ηABeA
µ(σ)eB

ν(σ) = gµν

⇒ Angular velocity Ωµν(σ) + conjugate spin Sµν(σ)

⇒ Lorentz matrices, ηABΛA
a(σ)ΛB

b(σ) = ηab + conjugate local spin, Sab(σ)
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Basics of Spin in Gravity DOFs and symmetries

Symmetries

1 General coordinate invariance, and parity invariance

2 Worldline reparametrization invariance

3 Internal Lorentz invariance of local frame field

4 SO(3) invariance of ‘body-fixed’ spatial triad

5 Spin gauge invariance, that is invariance under the choice of
completion of body-fixed spatial triad through timelike vector

6 Assume isolated object has no intrinsic permanent multipole moments
beyond mass (monopole) and spin (dipole), e.g. Kerr black hole
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Minimal Coupling to Gravity Introducing gauge freedom

Spin as particle DOF in action

Effective action of a spinning particle

Coordinate velocity uµ ≡ dyµ/dσ

Worldline tetrad eµA(σ)

⇒ Angular velocity Ωµν ≡ eµA
DeAν

Dσ

similar to the flat Ωab ≡ Λa
A
dΛAb

dσ

⇒ Lpp [uµ,Ωµν , gµν ]

Sµν ≡ −2 ∂L
∂Ωµν spin as further particle DOF – classical source

⇒ Spp =

∫
dσ

[
−m
√
u2 − 1

2
SµνΩµν + LNMC [uµ,Sµν , gµν (yµ)]

]

Linear momentum pµ ≡ − ∂L
∂uµ = m uµ

√
u2

+O(S2)

Start with the ‘covariant’ gauge with spin supplementary condition (SSC):

e[0]µ = pµ√
p2

, Sµνp
ν = 0
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Minimal Coupling to Gravity Introducing gauge freedom

Introduce gauge freedom in tetrad and spin

Transform gauge of worldline tetrad
From a condition

eAµq
µ = η[0]A ⇔ e[0]µ = qµ

to
êAµw

µ = η[0]A ⇔ ê[0]µ = wµ

with a boost-like transformation in covariant form

êAµ = Lµν(w , q)eAν

with qµ, wµ timelike unit 4-vectors

Ernst Stueckelberg

⇒ Generic gauge for the tetrad satisfies the generic SSC

ê[0]µ = wµ, Ŝµν
(
pν +

√
p2wν

)
= 0
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Minimal Coupling to Gravity Introducing gauge freedom

Extra term in minimal coupling

⇒ Ŝµν = Sµν − δzµpν + δzνpµ

δzµ =
Sµρwρ√
p2 + pw

= − Ŝµρpρ
p2

, δzµpµ = 0

⇒ Extra term in action appears!

For minimal coupling

1

2
SµνΩµν =

1

2
ŜµνΩ̂µν +

Ŝµρpρ
p2

Dpµ
Dσ

Extra term with covariant derivative of momentum,
contributes to finite size effects, yet carries no Wilson coefficient

Beyond minimal coupling

Sµν = Ŝµν −
Ŝµρp

ρpν
p2

+
Ŝνρp

ρpµ
p2
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Minimal Coupling to Gravity Disentangling field DOFs

Disentangling field and particle DOFs

Worldline tetrad contains both particle and field DOFs

êA
µ = Λ̂A

b ẽb
µ: ηAB Λ̂A

aΛ̂B
b = ηab, tetrad field ηab ẽ

a
µẽ

b
ν = gµν

For the 1st term of minimal coupling:

1

2
ŜµνΩ̂µν =

1

2
ŜabΩ̂ab

LocFlat +
1

2
Ŝabωµ

abuµ

with Ricci rotation coefficients ωµ
ab ≡ ẽbνDµẽ

aν

⇒ New rotational variables: Ω̂ab
LocFlat = Λ̂Aa dΛ̂A

b

dσ , Ŝab

Separation of field from particle DOFs is not complete

Λ̂[0]
a = w a = ẽaµw

µ may contain further field dependence

Ŝ0i components contain further field dependence

⇒ Field completely disentangled from particle DOFs
only once gauge for rotational variables is fixed
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Minimal Coupling to Gravity Disentangling field DOFs

Fixing gauge of rotational variables

Λ̂[0]a = wa, Ŝab
(
pb +

√
p2wb

)
= 0

3 sensible gauges

1 The ‘covariant’ gauge

Λ̂[0]a =
pa√
p2
⇒ Ŝabpb = 0

2 The ‘canonical’ gauge

Λ̂[0]
a = δa0 ⇒ Ŝab

(
pb +

√
p2δ0b

)
= 0

Generalization of Pryce-Newton-Wigner from flat spacetime

3 The ‘no mass dipole’ gauge

Λ̂[0]
a =

2p0δ
a
0 − pa√
p2

⇒ Ŝa0 = 0
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Head is spinning?



Non-Minimal Coupling Under construction

Non-minimal coupling: Under construction

Spin-induced higher multipoles

Consider the spin vector

Sµ ≡ ∗Sµν pν√
p2
' ∗Sµν uν√

u2
, ∗Sαβ ≡

1

2
εαβµνS

µν

⇒ SµS
µ = −1

2
SµνS

µν ≡ −S2

Consider dependence of higher powers of spin:

SαµS
µ
β = −SαSβ − S2

(
δαβ −

uαuβ
u2

)
SαµS

µ
νS

ν
β = −S2Sαβ

⇒ X (X + iS)(X − iS) = 0

⇒ Independent combinations: Sµ, Sµν , SαµS
µ
β ∼ SαSβ .
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Non-Minimal Coupling Under construction

Non-minimal coupling: Under construction

Even/odd spin-induced multipoles couple to even/odd parity electric/magnetic
curvature tensors, and their covariant derivatives

Spin-induced higher multipoles

Considering body-fixed frame: Spin multipoles are SO(3) irreps tensors

Recall we start from ‘covariant’ gauge: e[0]
µ = uµ/

√
u2, e[i ]

µuµ = 0

⇒ Spin-induced higher multipoles are symmetric, traceless,
and spatial, constant tensors in body-fixed frame

Curvature

Electric component Eµν ≡ Rµανβu
αuβ

Magnetic component Bµν ≡ 1
2εαβγµR

αβ
δνu

γuδ

⇒ In vacuum they are symmetric, traceless, and orthogonal to uµ,
also when projected to body-fixed frame, where they are spatial
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Non-Minimal Coupling Under construction

Non-minimal coupling: Under Construction

Adding covariant derivatives

Covariant derivatives of electric/magnetic tensors also
projected to body-fixed frame D[i ] = eµ[i ]Dµ

Time derivative D[0] = uµDµ ≡ D/Dσ can be ignored
at linear order in curvature, i.e. for non-tidal effects

In analogy to Maxwell’s equations

ε[ikl ]D[k]E[lj] = Ḃ[ij] ' 0

ε[ikl ]D[k]B[lj] = −Ė[ij] ' 0

⇒ D[i ]E[ij] = D[i ]B[ij] = 0, �E[ij] = �B[ij] = 0

⇒ Indices of covariant derivatives would be symmetrized
with respect to indices of electric/magnetic tensors

⇒ Covariant derivatives of these tensors also traceless
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Non-Minimal Coupling LO finite size effects

LO non-minimal couplings to all orders in spin

New spin-induced Wilson coefficients:

LNMC =
∞∑
n=1

(−1)n

(2n)!

CES2n

m2n−1
Dµ2n · · ·Dµ3

Eµ1µ2√
u2

Sµ1Sµ2 · · · Sµ2n−1Sµ2n

+
∞∑
n=1

(−1)n

(2n + 1)!

CBS2n+1

m2n
Dµ2n+1 · · ·Dµ3

Bµ1µ2√
u2

Sµ1Sµ2 · · · Sµ2n−1Sµ2nSµ2n+1

LO spin couplings up to 4PN order

LES2 = −CES2

2m
Eµν√
u2
SµSν , Quadrupole @2PN

LBS3 = −CBS3

6m2

DλBµν√
u2

SµSνSλ, Octupole @3.5PN

LES4 =
CES4

24m3

DλDκEµν√
u2

SµSνSλSκ, Hexadecapole @4PN
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Conclusion

Yes We Kerr!

What have we learned by now?

Spin may be tricky, so handle with Kerr

How to control our rotational DOFs

How to disentangle field and particle DOFs

We got the spin-induced non-minimal couplings

How to get next the useful basics: EOMs, Hamiltonians. . .

Why we must learn more!

Coupling gravity to spin differentiates candidate theories of gravity

Kerr black hole ↔ massive spin particle – to use amplitudes power
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