Topics in supergravity

Radu Roiban Pennsylvania State University

a rather biased review

Five loop UV behavior of \mathcal{N} = 8 supergravity with Bern, Carrasco, Chen, Edison, Johansson, Parra-Martinez, Zeng

Non-abelian gauged supergravity as double copies with Gunaydin, Chiodaroli, Johansson

and

Supergravity has a long and stellar history

- Constructed as a stand-alone theory
- Low energy limit of string theory
- Exhibits U-duality, whose full consequences are yet to be understood
- Prominent place in the gauge/gravity holographic correspondence
- Unique if there is sufficient supersymmetry
- Less supersymmetry \longleftrightarrow More data needed to specify theory
 - e.g. liftable to higher dimensions?
 - some interactions
- Powerful methods for constructing supergravities
- Not clear if all supergravities have been (in principle) constructed
- S matrix -- tool for exploration of many aspects of perturbative supergravity their finiteness properties: Is there a finite QFT with/of gravity? toy model for Einstein gravity coupled to matter or gauge fields

1. Understand perturbative properties of supergravity theories

- e.g. are there novel symmetries (in certain supergravity theories)?
- e.g. is it possible to avoid anomaly effects in S-matrix elements?
- e.g. is it possible to gauge an anomalous symmetry w/o penalty?
- e.g. verify arguments based on known symmetries (UV properties)

3/2. Develop techniques to actually do higher-loop calculations

2. Understand whether all supergravities share an underlying simplicity ${\rm Gravity} = {\rm YM} \otimes {\rm YM}$

5/2. Apply said techniques to other situations/fields

By trying to answer such questions we already learned and are likely to learn more about the structure and properties of gravity and supergravity theories

Supergravity has a long and stellar history

- Constructed as a stand-alone theory
- Low energy limit of string theory
- Exhibits U-duality, whose full consequences are yet to be understood
- Prominent place in the gauge/gravity holographic correspondence
- Unique if there is sufficient supersymmetry
- Less supersymmetry \longleftrightarrow More data needed to specify theory
 - e.g. liftable to higher dimensions?
 - some interactions
- Powerful methods for constructing supergravities
- Not clear if all supergravities have been (in principle) constructed

S matrix -- tool in exploration of many aspects of perturbative supergravity their finiteness properties: Is there a finite QFT with/of gravity? toy model for Einstein gravity coupled to matter or gauge fields tool for applying perturbative (super)gravity methods tool for constructing novel supergravities

A plan

Supergravity theories – a Lagrangian perspective

Supergravity theories – an S matrix perspective

Examples: Supergravities with gauged R symmetry

Maxwell-Einstein supergravities

Pure supergravities -- \mathcal{N} =8 SG at 5 loops more in Alex Edison's talk

Focusing on $\mathcal{N}=2$ Maxwell-Einstein theories...

 \mathring{a}_{IJ} in terms of vielbeine on the scalar manifold:

• canonical basis for C: $C_{000} = 1$ $C_{00i} = 0$ $C_{0ij} = -\frac{1}{2}\delta_{ij}$ i, j = 1, ..., nall other entries C_{ijk} arbitrary

D=5 $\mathcal{N}=2$ SG w/ vector multiplets: spectrum does not fix theory uniquely; interactions can be different

 $\alpha \alpha ($

1 1)

$$\mathcal{M}_{gJf} = \frac{SO(n-1,1)}{SO(n-1)} \times SO(1,1)$$
If scalar manifold
is symmetric space
(incomplete summary)

$$\mathcal{M}_{gJf}(\xi) = \sqrt{2}\xi^{0} \left((\xi^{1})^{2} - (\xi^{2})^{2} - \dots - (\xi^{n})^{2} \right)$$

$$\mathcal{M}_{g-NJf}(\xi) = \frac{3\sqrt{3}}{2\sqrt{2}} \left(\sqrt{2}\xi^{0}(\xi^{1})^{2} - \xi^{1} \left((\xi^{2})^{2} + \dots + (\xi^{n})^{2} \right) \right)$$

$$Magical cases for \ n = 4, 8, 14, 26$$

$$\mathcal{M}_{magical} \in \left\{ \frac{SL(3, \mathbf{R})}{SO(3)}, \ \frac{SL(3, \mathbf{C})}{SU(3)}, \ \frac{SU^{*}(6)}{USp(6)}, \ \frac{E_{6(-26)}}{E_{4}} \right\}$$

More general – homogeneous scalar manifolds
 de Wit, van Proeyen

$$N_{\text{hom}}(\xi) = \sqrt{2}\xi^0((\xi^1)^2 - (\xi^i)^2) + \xi^1(\xi^{\alpha})^2 + \tilde{\Gamma}^i_{\alpha\beta}\xi^i\xi^{\alpha}\xi^{\beta}$$

- Totality of global symmetries = U-duality
- Scalar manifolds need not be homogeneous spaces or have any symmetries;
 When present, some symmetries can be gauged
- Hypermultiplets can be included as well

Dimensional reduction to D=4

Gunaydin, McReynolds, Zagerman

- one extra vector multiplet

$$e^{-1}\mathcal{L}^{(4)} = -\frac{1}{2}R - \frac{1}{2}e^{3\sigma}W_{\mu\nu}W^{\mu\nu} - \frac{3}{4}\partial_{\mu}\sigma\partial^{\mu}\sigma -\frac{1}{4}e^{\sigma}a_{IJ}(F_{\mu\nu}^{I} + 2W_{\mu\nu}A^{I})(F^{J\mu\nu} + 2W^{\mu\nu}A^{J}) -\frac{1}{2}e^{-2\sigma}a_{IJ}\partial_{\mu}A^{I}\partial^{\mu}A^{J} - \frac{3}{4}a_{IJ}\partial_{\mu}h^{I}\partial^{\mu}h^{J} +\frac{e^{-1}}{2\sqrt{6}}C_{IJK}\epsilon^{\mu\nu\rho\sigma}\{F_{\mu\nu}^{I}F_{\rho\sigma}^{J}A^{K} + 2F_{\mu\nu}^{I}W_{\rho\sigma}A^{J}A^{K} + \frac{4}{3}W_{\mu\nu}W_{\rho\sigma}A^{I}A^{J}A^{K}\}$$

- Fermion terms are known
- U-duality group grows; e/m duality may or may not be factorized subgroup
 If factorized:
 - all vectors $F^A = \{W, F^I\}$ and their duals \tilde{F}^A in rep. of 4d G
 - $\binom{F^A}{\tilde{F}^A}$ doublet of SU(1,1)
 - dilaton/axion parametrize SU(1,1)/U(1)
 - SU(1,1) is typically anomalous; anomaly can sometimes be assigned to group elements that do not affect S matrix

- U-duality group grows; e/m duality may or may not be factorized sg
 If factorized:
 - all vectors $F^A = \{W, F^I\}$ and their duals \tilde{F}^A in rep. of 4d G
 - $\begin{pmatrix} F^A \\ \tilde{F}^A \end{pmatrix}$ doublet of SU(1,1)
 - dilaton/axion parametrize SU(1,1)/U(1)
 - SU(1,1) is typically anomalous;

anomaly can sometimes be assigned to group elements that

do not affect S matrix

Bern, Parra-Martinez, RR

Example: \mathcal{N} =4 supergravity

$$e^{-1}\mathcal{L} = -\frac{1}{2}R + \frac{1}{4}\left(\partial_{\mu}\varphi\partial^{\mu}\varphi + e^{2\varphi}\partial_{\mu}\chi\partial^{\mu}\chi - e^{-\varphi}F^{A}_{\mu\nu}F^{\mu\nu A} - i\chi F^{A}_{\mu\nu}\tilde{F}^{\mu\nu A}\right)$$
$$= -\frac{1}{2}R + \frac{1}{4}\left(\frac{\partial_{\mu}\tau\partial^{\mu}\bar{\tau}}{(Im(\tau))^{2}} + i\tau F^{A+}_{\mu\nu}F^{A+}_{\mu\nu} - i\bar{\tau} F^{A-}_{\mu\nu}F^{A-}_{\mu\nu}\right)$$

$$e^{-1}\mathcal{L} = -\frac{1}{2}R + \frac{1}{2}g_{rs}(\Phi)\partial_{\mu}\Phi^{r}\partial^{\mu}\Phi^{s} + \frac{1}{4}\left(i\bar{\mathcal{N}}_{\Lambda\Sigma}F_{\mu\nu}^{-\Lambda}F^{-\Sigma|\mu\nu} - i\mathcal{N}_{\Lambda\Sigma}F_{\mu\nu}^{+\Lambda}F^{+\Sigma|\mu\nu}\right)$$
$$G = SO(n,6) \times SU(1,1) \qquad \qquad \mathcal{M}_{s} = \frac{SO(n,6)}{SO(n) \times SO(6)} \times \frac{SU(1,1)}{U(1)} \quad \text{de Roo}$$

Gauging of global symmetries – a Lagrangian perspective

 Global symmetries: R symm & symm's of scalar space which are symm's of 5d is advantageous: U-duality is a symmetry of Lagrangian

Gauging: deformation of the Maxwell-Einstein theory some of the *existing* vector fields are given interactions that gauge some of the global symm's; vectors can become self-interacting

Several types of gaugings with gauge group K $K \subseteq R$ $K \subseteq \text{Compact}(U)$ $K \subseteq \text{Noncompact}(U)$

 $K \subseteq R \times Compact(U)$ $K \subseteq R \times Noncompact(U)$

Gauging of global symmetries – a Lagrangian perspective

 Global symmetries: R symm & Symm's of scalar space which are symm's of 5d is advantageous: U-duality is a symmetry of Lagrangian

Gauging: deformation of the Maxwell-Einstein theory some of the *existing* vector fields are given interactions that gauge some of the global symm's; vectors can become self-interacting

Unitarity is preserved for noncompact gaugings

Gauging can lead to scalar-field potentials; vacuum structure and vacuum symm's can be different between the gauged and ungauged theories (e.g. Minkowski vacua may have broken supersymmetry)

Gunaydin, Sierra, Townsend

• Gauge group generators:
$$(M_r)_I{}^J$$
, $[M_r, M_s] = f_{rs}{}^t M_t$
Lagrangian symmetry: $(M_r)_{(I}{}^L C_{JK)L} = 0$
• Covariantization:
 $\partial_\mu \varphi^x \rightarrow \partial_\mu \varphi^x + g A^s_\mu K^x_s$, $K^x_s = -\sqrt{\frac{3}{2}} (M_s){}^J_I h_J h^{Ix}$
 $\partial_\mu \varphi^x \rightarrow \partial_\mu \varphi^x + g A^s_\mu K^x_s$, $L^{ab}_t = (M_t){}^J_I h^{[a]}_J h^{I[b]} - \Omega^{ab}_x K^x_t$
 $\nabla_\mu \lambda^{ia} \rightarrow \nabla_\mu \lambda^{ia} + g L^{ab}_t A^t_\mu \lambda^{ib}$, $Spin \text{ connection on } \mathcal{M}$
 $F^I_{\mu\nu} \rightarrow \mathcal{F}^I_{\mu\nu} = \partial_\mu A^I_\nu - \partial_\nu A^I_\mu + g f^I_{JK} A^J_\mu A^K_\nu$
Zero unless indices are in gauge group

YME gauging in d=5:

Gunaydin, Sierra, Townsend

- Fermion-scalar couplings: $\mathcal{L}_Y = -\frac{i}{2}g\bar{\lambda}^{ia}\lambda^b_i K_{r[a}h^r_{b]}$

YME gauging in d=5:

No scalar potential —> there is a Minkowski ground state with unbroken susy

• 4d from 5d by dimensional reduction

Gunaydin, McReynolds, Zagermann

• Scalar potential appears; nonetheless, Minkowski vacuum survives

$$e^{-1}\mathcal{L}^{(4)} = -\frac{1}{2}R - \frac{3}{4} \overset{\circ}{a}_{IJ} (\mathcal{D}_{\mu}\tilde{h}^{I}) (\mathcal{D}^{\mu}\tilde{h}^{J}) - \frac{1}{2}e^{-2\sigma} \overset{\circ}{a}_{IJ} (\mathcal{D}_{\mu}A^{I}) (\mathcal{D}^{\mu}A^{J}) - \frac{1}{4}e^{\sigma} \overset{\circ}{a}_{IJ} (\mathcal{F}^{I}_{\mu\nu} + 2W_{\mu\nu}A^{I}) (\mathcal{F}^{J\mu\nu} + 2W^{\mu\nu}A^{J}) - \frac{1}{2}e^{3\sigma}W_{\mu\nu}W^{\mu\nu} + \frac{e^{-1}}{2\sqrt{6}}C_{IJK} \epsilon^{\mu\nu\rho\sigma} \Big\{ \mathcal{F}^{I}_{\mu\nu}\mathcal{F}^{J}_{\rho\sigma}A^{K} + 2\mathcal{F}^{I}_{\mu\nu}W_{\rho\sigma}A^{J}A^{K} + \frac{4}{3}W_{\mu\nu}W_{\rho\sigma}A^{I}A^{J}A^{K} \Big\} - g^{2}P_{4} ,$$

$$\mathcal{D}_{\mu}A^{I} \equiv \partial_{\mu}A^{I} + gA^{J}_{\mu}f^{I}_{JK}A^{K} \mathcal{F}^{I}_{\mu\nu} \equiv 2\partial_{[\mu}A^{I}_{\nu]} + gf^{I}_{JK}A^{J}_{\mu}A^{K}_{\nu}$$

$$P_{4} = \frac{3}{4}e^{-3\sigma} \overset{\circ}{a}_{IJ}(A^{r}(M_{r})^{I}{}_{K}h^{K})(A^{s}(M_{s})^{J}{}_{L}h^{L})$$

Gauging of R symmetry

First gauging: U(1) and SU(2) of pure $\mathcal{N}=2$ and $\mathcal{N}=3$ SGs.

Minimal vector-gravitino coupling ----> gravitino mass

cosmological constant
 Typical vacuum is supersymmetric and not Minkowski
 Minkowski vacua have (partial) spontaneous supersymmetry breaking

First gauging of $\mathcal{N}=8$ supergravity: *SO(8)*

 $E_{7(7)}$ is a large group; other options should be available

The game: 1) formulate the theory such that a (desired) subgroup of U duality is realized off shell
2) try to gauge it
SU(3,1)
Gunaydin, Romans, Warner

SO(p, 6-p) in d=5

SO(p,8-p)

Hull

Many further examples, $2 \le \mathcal{N} < 8$

More systematic approach: embedding tensor formalism

De Wit, Nicolai, Samtleben, Trigiante

De Wit, Nicolai

Freedman, Das

More systematic approach to gauging: embedding tensor formalism De Wit, Nicolai, Samtleben, Trigiante

- Start with U-duality-covariant formulation of the action

- Replace
$$\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} - g A^{M}_{\mu} \Theta_{M}{}^{\alpha} T_{\alpha}$$

 All

V-duality

generators

Embedding of the gauge group

in U-duality group

- Constrain $\Theta_M{}^{\alpha}$ by demanding: - algebra closure (quadratic relation) - supersymmetry (linear relation)

- Solve them

Examples of new gaugings of $\mathcal{N}=8$ SG with Minkowski vacua

SO [*] (8)	 	SU(4)xU(1)	
CSO [*] (6,2)	∭=2	SU(3)xU(1)	Borghese, Dibitetto, Guarino, Roest, Varela:
CSO*(4,4)	∕ ≫= 4	SU(2)xU(1)	Catino, Dall'Agata, Inver
(SO(4) x SO(2,2)) x T ¹⁶	М=0	SU(2) ² xU(1) ²	Trigiante, Zwirner;
(SO [*] (4) x U(1)) x N ²⁰	∭=2	SU(2)xU(1) ²	Hull
Gauge group	Residual	Unbroken	
	susy	gauge group	

Supergravity theories – an S matrix perspective

Supergravity theories – an S matrix perspective

- Probes aspects of the theory without complications due to certain nonlinearities and possible field choices
- Less transparent for properties that do not have a linearized approximation approaches: Arkani-Hamed, Cachazo, Kaplan; etc

Kallosh

The main tools for gravitational S-matrix elements: ${\rm Gravity} = {\rm YM} \otimes {\rm YM}$

- The double-copy construction/color-kinematics Bern, Carrasco, Johansson

$$\mathcal{M}_m^{L-\text{loop}} = i^{L+1} \left(\frac{\kappa}{2}\right)^{m-2+2L} \sum_{i \in \mathcal{G}_3} \int \prod_{l=1}^L \frac{d^D p_l}{(2\pi)^D} \frac{1}{S_i} \frac{n_i \tilde{n}_i}{\prod_{\alpha_i} p_{\alpha_i}^2}$$

 Diffeomorphism invariance is a consequence of gauge invariance of the two gauge theories entering the construction Chiodaroli, Gunaydin, Johansson, RR Arkani-Hamed, Rodina, Trnka

Diffeomorphism invariance from gauge invariance

1. Linearized YM gauge transformations:
$$\epsilon^{\mu}(p) \mapsto p^{\mu}$$

$$\mathcal{A} = \sum_{\Gamma} \frac{n_{\Gamma}(\epsilon_{1}(p_{1}), \epsilon_{2}, \dots)c_{\Gamma}}{D_{\Gamma}} \longrightarrow 0 = \sum_{\Gamma} \frac{n_{\Gamma}(p_{1}, \epsilon_{2}, \dots)c_{\Gamma}}{D_{\Gamma}}$$
1. structure of n_{Γ} 2. Algebra relations for c_{Γ}
2. Linearized diffeomorphisms: $\epsilon^{\mu\nu}(p) \mapsto p^{(\mu}q^{\nu)}$
 $\epsilon^{\mu\nu}(p) \equiv \epsilon^{(\mu}(p)\epsilon'^{\nu)}(p) \mapsto p^{(\mu}\epsilon'^{\nu)}(p) + p^{(\nu}\epsilon^{\mu)}(p)$

$$\mathcal{M} = \sum_{\Gamma} \frac{n_{\Gamma}(\epsilon_{1}(p_{1}), \epsilon_{2}, \dots)\tilde{n}_{\Gamma}(\epsilon'_{1}(p_{1}), \epsilon'_{2}, \dots)}{D_{\Gamma}}$$
 $\delta \mathcal{M} = \sum_{\Gamma} \frac{n_{\Gamma}(p_{1}, \epsilon_{2}, \dots)\tilde{n}_{\Gamma}(\epsilon'_{1}(p_{1}), \epsilon'_{2}, \dots)}{D_{\Gamma}} + (n \leftrightarrow \tilde{n})$

 $n_{\Gamma}, \tilde{n}_{\Gamma}\&c_{\Gamma}$ have the same properties $\implies \delta \mathcal{M} = 0$ for the same reasons as in YM theory

Supergravity theories – an S matrix perspective

- Probes aspects of the theory without complications due to certain nonlinearities and possible field choices
- Less transparent for properties that do not have a linearized approximation approaches: Arkani-Hamed, Cachazo, Kaplan; etc

Kallosh

The main tools for gravitational S-matrix elements: $Gravity = YM \otimes YM$

- The double-copy construction/color-kinematics Bern, Carrasco, Johansson

$$\mathcal{M}_m^{L-\text{loop}} = i^{L+1} \left(\frac{\kappa}{2}\right)^{m-2+2L} \sum_{i \in \mathcal{G}_3} \int \prod_{l=1}^L \frac{d^D p_l}{(2\pi)^D} \frac{1}{S_i} \frac{n_i \tilde{n}_i}{\prod_{\alpha_i} p_{\alpha_i}^2}$$

- Diffeomorphism invariance is a consequence of gauge invariance of the ۲ two gauge theories entering the construction Chiodaroli, Gunaydin, Johansson, RR Arkani-Hamed, Rodina, Trnka
 - Further subtleties when matter in non-adjoint representation is present
 - correlation between representations of fields on graph's edges
 - 2-copy spectrum \iff (ir)reducibility of matter representations
 - Generalized double-copy construction Bern, Carrasco, Chen, Johansson, Zeng, RR (more later)

Supergravities with a double-copy structure

 \mathcal{N} > 4 SG

 $\mathcal{N} = 4$ + vectors

pure \mathcal{N} < 4

𝒴=2 MESG generic Jordan

N=2 MESG homogeneous

N=2 MESG +hypers special cases

N=2 MESG +vectors+hypers special cases

0≤N≤4 YME generic Jordan

∕∕V=4 sYM
∕∕N≤4 sYM
∕N=4 sYM
$\mathcal{N}=0$ sYM
or $\mathcal{N}=2 \times \mathcal{N}=2$
YM+ghosts
YM+ghosts

 $\mathcal{N}=2 \text{ sYM}$ $\mathcal{N}=0 \text{ sYM}$

 $\mathcal{N}=2$ sYM+½hyper $\mathcal{N}=0$ sYM+fermions

 \mathcal{N} =2 sYM+½hyper \mathcal{N} =0 sYM+scalars

 \mathcal{N} =1 sYM+chiral \mathcal{N} =1 sYM+chiral

 $\mathcal{N}=2$ sYM $\mathcal{N}=0$ sYM + Φ^3 Bern, Boucher-Veronneau, Davies, Dennen, Dixon, Carrasco, Johansson, RR

Johansson, Ochirov

Chiodaroli, Gunaydin, Johansson, RR

Chiodaroli, Gunaydin, Johansson, RR; Anastasiou, Borsten, Duff, Marrani, Nagy, Zoccali

Carrasco, Chiodaroli, Gunaydin, RR; Damgaard, Huang, Sondergaard, Zhang; Anastasiou, Borsten, Hughes, Nagy

Chiodaroli, Gunaydin, Johansson, RR; Cachazo, He, Yuan; Du, Teng, Feng; Cheung, Shen, Wen; Casali, Geyer, Mason, Monteiro, Roehrig; Nandan, Plefka, Schlotterer, Wen

N=2 U(1) gauged special cases	N=2 sYM + X N=0 sYM SSB	Chiodaroli, Gunaydin, Johansson, RR
N≥4 U(1) and G-gauged special cases	N=4 sYM SSB N=4 sYM+mass + ★	
N = 1 SG +vectors special cases	\mathcal{N} =1+chiral YM+scalars+fermions	Chiodaroli, Gunaydin, Johansson, RR; Anastasiou, Borsten, Duff, Marrani, Nagy, Zoccali ; Johansson, Ochirov
\mathcal{N} = 1 SG +chirals special cases	\mathcal{N} =1+chiral YM+scalars+scalars	
$\mathcal{N} = 0 \text{ SG}$ +matter special cases	YM+matter YM+matter	Johansson, Ochirov
$\mathcal{N}=0$ SG + $\Phi R^2 + R^3$	YM+ <i>F</i> ³ + YM+ <i>F</i> ³⁺	Broedel, Dixon
N≤4 conformal (S)G	DF ² (s)YM	Johansson, Nohle; Johansson, Mogull, Teng
3D maximal SG	BLG × BLG or sYM × sYM	Huang, Johansson; Bargeer, He, McLoughlin

So many of them... Is it possible that all supergravities are double copies?

General patterns:

Manifest global symmetries are inherited from single copies; enhancements Global symmetries are gauged with single-copy cubic biadjoint coupling (minimal vector self-coupling)

Double-copy states \iff gauge invariant bilinears; gauge theory representations need not be irreps; organization in representations correlated to target spectrum

Upcoming review, to appear Bern, Carrasco, Chiodaroli, RR Lots of new results

- Graviton-matter amp's in EYM generic Jordan family
- Rational one-loop amp's in EYM generic Jordan family Nandan, Plefka, Travaglini
- One-loop effective action in dilaton gravity for massive scalars Plefka, Steinhoff, Wormsbecher
- One-loop amplitudes and UV properties of homogeneous ME supergravities with hypermultiplets
 Ben-Shahar, Chiodaroli
- Cancellation of duality anomaly in S matrix in $\mathcal{N}=4$ SG and possibly elsewhere Bern, Parra-Martinez, RR
- Progress on off-shell matching of DOF
- Rational map interpretation of YM and gravity amplitudes in d=6; Cachazo, Guevara,
 YM coulomb branch amplitudes
 Heydeman, Mizera, Schwarz, Wen
- Double-copy approach of certain SGs with nonabelian gauged R symmetry Chiodaroli, Gunaydin, Johansson, RR
- 2-loop SQCD matter amplitudes
- UV properties of $\mathcal{N}=8$ SG at 5 loops; new structures in the small momentum exp. Bern, Carrasco, Chen, Edison, Johansson, Parra-Martinez, RR, Zeng
- Novel/enhanced properties of \mathcal{N} =8 SG cuts in D=4

Herrmann, Trnka

Kälin, Mogull, Ochirov

Lots of new results

- Conformal symmetry in tree-level gravity amplitudes Loebbert, Mojaza, Plefka -relation to hidden superconformal symm. conj. in \mathcal{N} =4 SG? Ferrara, Kallosh, van Proeven Adamo, Casali, Mason, Nekovar - Progress on scattering in curved space Classical gravity from S matrix - BH scattering in N=8 SG; integrability of BH orbits Caron-Huot, Zaharee - Double-copy for self-dual solutions as a differential operator Berman, Chácon, Luna, White on harmonic functions in biadjoint scalar theory Ilderton - Certain gravitational waves as Kerr-Schild double copies - The Weyl double-copy – larger class of 2-copy s.-t. Luna, Monteiro (Nicholson) O'Connell - generalizes Kerr-Schild double-copy, reduces to it in app'te limits - Perturbiner for EFT; possible new approach to classical 2-copy Mizera, Skrzypek - Leading order gravitational radiation in EYM generic Jordan family Chester **CH** Shen
- Next-to-leading order radiation for gravity-coupled scalar fields
- Systematics of gravitational effective action in classical limit Cheung, Rothstein, Solon from scattering amplitudes
- Systematics of certain classical gravitational observables Kosower, Maybee, O'Connel from scattering amplitudes

Example: \mathcal{N} =8 supergravity at 5 loops

Symmetry-based predictions and refinements for UV div's of pure 4D SGs

3-loop ∕∕V=8	Green, Schwarz, Brink ('82); Marcus, Sagnotti ('85) Howe, Stelle ('89)	Summary of results of	
5-loop ∕∕V=8	Bern, Dixon, Dunbar, Perelsein, Rozowski ('98) Howe, Stelle ('03, '09)	X	Bern, Carrasco, Davies, Dennen,
6-loop ∕∕N=8	Howe, Stelle ('12)	X	Kosower, Dixon, Johansson, RR,
7-loop ∕∕N=8	Grisaru, Siegel ('82); Bossard, Howe, Stelle ('09); Vanhove; Björnsson, Green ('10); Kiermaier, Elvang, Freedman('10); Ramond, Kallosh ('10); Biesert et al ('10); Bossard, Howe, Stelle, Vanhove ('11)	?	Goal is to eventually check this
8-loop ∕∕N=8	Kallosh ('80); Howe, Lindstrom ('80)	?	
9-loop ∕∕N=8	Berkovits, Green, Russo, Vanhove ('09)	?	retracted
4-loop ∕∕N=5	Bossard, Howe, Stelle, Vanhove ('11)	X	unexplained
3-loop ∕∕N=4	Bossard, Howe, Stelle, Vanhove ('11)	X	
4-loop ∭=4	Vanhove, Tourkine ('12)	∨ but	 SU(1,1) anomaly

Symmetry-based predictions are as good as one's understanding of symmetries

Generalized unitarity/contact term method:

Bern, Carrasco, Dixon, Johansson, RR Bern, Carrasco, Chen, Johansson, RR

0. Organize cuts into classes, labeled by the number of uncut propagators

All exposed propagators are cut

- Each cut gives new information on the amplitude, fixing terms in which *all* the uncut propagators are absent
- There is a finite number of cuts, determined by the powercounting of the theory, which should be expected to give new contributions

Generalized unitarity/the contact term method/generalized double-copy

Bern, Carrasco, Dixon, Johansson, RR Bern, Carrasco, Chen, Johansson, RR

1. Start with some approximation of the supergravity amplitude, organized in terms of the graphs of φ^3 theory, which has the correct maximal cuts, e.g.

a naïve double-copy:

$$\mathcal{M}^{(S)G} = \sum_{\Gamma} \int \frac{n_{\Gamma} \tilde{n}_{\Gamma}}{D_{\Gamma}}$$

2. Iteratively correct it w/ graphs w/ higher-pt. vert's to satisfy such that N^k-Max cuts

 N^{k} -contact = N^{k} -max cut – (N^{k} -max cut of approximation of amp.)

- Each cut gives an independent contrib.
 to amplitude
- Some freedom in choosing each of them
- Lots of cuts
- But a finite number!
- $\mathcal{N}=8$ SG: N^{2L-4}-contact

Magic: existence of BCJ rep \implies contacts are bilinears in $J_{ijk} = n_i + n_j + n_k$ Carrasco talk at QCD meets Gravity III & Amplitudes 2018

Generalized unitarity/the contact term method/generalized double-copy

Bern, Carrasco, Dixon, Johansson, RR Bern, Carrasco, Chen, Johansson, RR

1. Start with some approximation of the supergravity amplitude, organized in terms of the graphs of φ^3 theory, which has the correct maximal cuts, e.g.

a naïve double-copy:

$$\mathcal{M}^{(S)G} = \sum_{\Gamma} \int \frac{n_{\Gamma} \tilde{n}_{\Gamma}}{D_{\Gamma}}$$

2. Iteratively correct it w/ graphs w/ higher-pt. vert's to satisfy such that N^K-Max cuts

 N^{k} -contact = N^{k} -max cut – (N^{k} -max cut of approximation of amp.)

- Each cut gives an independent contrib.
 to amplitude
- Some freedom in choosing each of them
- Lots of cuts
- But a finite number!
- $\mathcal{N}=8$ SG: N^{2L-4}-contact

- Effectively a tree-level calculation
- Ideal if cuts are organized in terms of cubic tree graphs

Constructed the 4-point 5-loop integrand of \mathcal{N} = 8 supergravity Bern, Carrasco, Chen, Edison, Johansson, Parra-Martinez, RR, Zeng

together with 2-, 3-, 4-, 5-, and 6-collapsed propagator graphs: >
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
</ $N^0:752$ /649 N²:9007 /1306 N³: 17479/2457 N⁴: 22931/2470 N⁵: 20657/1335 王梦这美国会员国家国家国家国家区域 N^6 : 13071/256 王国王国帝国帝国帝国帝国帝帝国国际的令 Exhibited power ct depends on that of **这时会会会员这会会会国家会球场场会会** the representation 这里罗帝国国王的中国国王的中国国王 of YM amplitude

UV properties/critical dimension at 5 loops $\mathcal{M}_{4}^{(5)} \sim (stu\mathcal{M}_{4}^{(0)}) s^2 \int d^{5D}l \left[F_{-10}(l_i \cdot l_j) + sF_{-11}(l_i \cdot l_j) + s^2F_{-12}(l_i \cdot l_j) + \dots\right]$

• Eight master integral topologies

$$\begin{split} & \bigoplus_{(a)} \bigoplus_{(b)} \bigoplus_{(c)} \bigoplus_{(c)} \bigoplus_{(d)} \bigoplus_{(e)} \bigoplus_{(e)} \bigoplus_{(f)} \bigoplus_{(g)} \bigoplus_{(g)} \bigoplus_{(h)} \bigoplus_{(h)}$$

See Alex Edison's talk for details and implications

- $\mathcal{N}=8$ SG has no enhanced cancellations in D = 24/5; diverges in this dimension
- $\mathcal{N}=5$ SG does have enhanced cancellations in D = 4
- Analysis of cuts vs. UV $\longrightarrow D = 4$ can be responsible

Herrmann, Trnka

Example: theories with gauged nonabelian *R* symmetry

Example: theories with gauged nonabelian R symmetry

Spontaneous supersymmetry breaking in the Minkowski vacuum

- gravitino minimal coupling $\longrightarrow \mathcal{M}_3(1\overline{\psi}_i, 2\psi_j, 3A^a) = ig_{\mathrm{R}}t^a_{ij}\overline{v}^{\mu}_1 \notin_3 v_{2\mu} + \mathcal{O}(g^0_{\mathrm{R}})$
- linearized susy transformation $v_{l\mu}
 ightarrow v_{l\mu} + k_{l\mu}\epsilon$ is not a symmetry
- massive gravitini: constructed from a massive vector and massive fermion
- reduce to ungauged theory in massless limit; supersymmetry is restored

- (at least) one gauge theory has trilinear vector couplings (nonabelian gauge symm)

$\begin{array}{ll} \text{Massive deformations of $\widehat{\mathcal{N}}$=4 sYM} & \text{Chiodaroli, Gunaydin, Johansson, RR}\\ \text{to appear} \\ \text{Action ansatz:} \\ \mathcal{L} = -\frac{1}{4}(F_{\mu\nu}^{\hat{a}})^2 + \frac{1}{2}(D_{\mu}\phi^{\hat{a}I})^2 - \frac{1}{2}m_{IJ}^2\phi^{\hat{a}I}\phi^{\hat{a}J} - \frac{g^2}{4}f^{\hat{a}\hat{b}\hat{e}}f^{\hat{c}\hat{d}\hat{e}}\phi^{\hat{a}I}\phi^{\hat{b}J}\phi^{\hat{c}I}\phi^{\hat{d}J} - \frac{g^2}{3!}f^{\hat{a}\hat{b}\hat{c}}F^{IJK}\phi^{\hat{a}I}\phi^{\hat{b}J}\phi^{\hat{c}K} \\ + \frac{i}{2}\bar{\psi}D\psi - \frac{1}{2}\bar{\psi}M\psi + \frac{g}{2}\phi^{\hat{a}I}\bar{\psi}^a\Gamma^I t_R^{\hat{a}}\psi & \text{with } \{M,\Gamma_{11}\} = 0 \end{array}$

Color-kinematics-duality constraints:

$$\begin{pmatrix} \Gamma^{I}\Gamma^{J}M + \Gamma^{I}M\Gamma^{J} - M\Gamma^{J}\Gamma^{I} - \Gamma^{J}M\Gamma^{I} + i\lambda F^{IJK}\Gamma^{K} \end{pmatrix} = 0 \\ \{\Gamma^{I}, \Gamma^{J}\} = -2\delta^{IJ}$$

A particular solution: $M=irac{g}{4}\Gamma^{789}$, $F^{789}=1$; SU(2) symmetry

Further constraints related to spectrum

1) No undesired/undesirable states in the spectrum

2) Recover \mathcal{N} =8 spectrum in massless/ungauged limit

 $\begin{array}{ll} \text{Massive deformations of \mathcal{N}=4 sYM} & \text{Chiodaroli, Gunaydin, Johansson, RR}\\ & \text{to appear} \\ \text{Action ansatz:} \\ \mathcal{L} = -\frac{1}{4} (F_{\mu\nu}^{\hat{a}})^2 + \frac{1}{2} (D_{\mu} \phi^{\hat{a}I})^2 - \frac{1}{2} m_{IJ}^2 \phi^{\hat{a}I} \phi^{\hat{a}J} - \frac{g^2}{4} f^{\hat{a}\hat{b}\hat{e}} f^{\hat{c}\hat{d}\hat{e}} \phi^{\hat{a}I} \phi^{\hat{b}J} \phi^{\hat{c}I} \phi^{\hat{d}J} - \frac{g^2}{3!} f^{\hat{a}\hat{b}\hat{c}} F^{IJK} \phi^{\hat{a}I} \phi^{\hat{b}J} \phi^{\hat{c}K} \\ & + \frac{i}{2} \bar{\psi} D \psi - \frac{1}{2} \bar{\psi} M \psi + \frac{g}{2} \phi^{\hat{a}I} \bar{\psi}^a \Gamma^I t_R^{\hat{a}} \psi & \text{with } \{M, \Gamma_{11}\} = 0 \end{array}$

Color-kinematics-duality constraints:

$$\left(\Gamma^{I} \Gamma^{J} M + \Gamma^{I} M \Gamma^{J} - M \Gamma^{J} \Gamma^{I} - \Gamma^{J} M \Gamma^{I} + i \lambda F^{IJK} \Gamma^{K} \right) = 0$$

$$\left\{ \Gamma^{I}, \Gamma^{J} \right\} = -2\delta^{IJ}$$

A particular solution: $M = i \frac{g}{4} \Gamma^{789}$, $F^{789} = 1$; SU(2) symmetry

Further constraints related to spectrum demand:

SU(3N) gauge group; orbifold with $m_{55} = m = m_{66}$, $m_{IJ} = 0$ $\lambda \to e^{\frac{2\pi}{5}\Gamma_{56}}g^{\dagger}\lambda g$, $\phi^{a} \to R^{ab}\left(\frac{4\pi}{5}\right)g^{\dagger}\phi^{b}g$, $g = \operatorname{diag}\left(I_{N}, e^{i\frac{2\pi}{5}}I_{N}, e^{i\frac{4\pi}{5}}I_{N}\right)$ Assign representations $\begin{pmatrix} A_{\mu}, \phi^{i} & \lambda^{r} & \phi^{+} \\ \tilde{\lambda}^{r'} & A_{\mu}, \phi^{i} & \lambda^{r} \\ \phi^{-} & \tilde{\lambda}^{r'} & A_{\mu}, \phi^{i} \end{pmatrix} \longrightarrow \begin{pmatrix} G & R_{1} & R_{2} \\ \bar{R}_{1} & G & R_{1} \\ \bar{R}_{2} & \bar{R}_{1} & G \end{pmatrix}$ The other side: $\mathcal{N}=4$ on Coulomb branch

$$\langle \phi^4 \rangle = \operatorname{diag}(u_1 I_N, u_2 I_N, u_3 I_N) , \qquad u_1 + u_2 + u_3 = 0$$

Masses of irreps combined into a single rep should be equal $\begin{pmatrix} G & R_1 & R_2 \\ \bar{R}_1 & G & R_1 \\ \bar{R}_2 & \bar{R}_1 & G \end{pmatrix}$

$$u_1 - u_2 = u_2 - u_3 \implies u_2 = 0$$

Matching spectra of gauge theories: $M^2 = -u_1^2$ $m^2 = 4u_1^2$

Supergravity spectrum:

Rep.	R	L	Sugra fields	$mass^2$
G	$A_\mu \oplus \phi^i$	$\mathcal{V}^0_{\mathcal{N}=4}$	$\mathcal{H}_{\mathcal{N}=4}\oplus 4\mathcal{V}^0_{\mathcal{N}=4}$	0
R_1	λ^r	$\mathcal{V}_{\mathcal{N}=4}^m$	$2\Psi^m_{\mathcal{N}=4}$	u_1^2
$ar{R}_1$	$\widetilde{\lambda}^{r'}$	$\mathcal{V}_{\mathcal{N}=4}^m$	$2\Psi^m_{\mathcal{N}=4}$	u_1^2
R_2	ϕ^+	$\mathcal{V}_{\mathcal{N}=4}^m$	$\mathcal{V}_{\mathcal{N}=4}^m$	$4u_{1}^{2}$
$ar{R}_2$	ϕ^-	$\mathcal{V}_{\mathcal{N}=4}^m$	$\mathcal{V}_{\mathcal{N}=4}^m$	$4u_{1}^{2}$

Symmeries: - unbroken SU(2) x U(1)

- sufficient vectors for CSO^{*}(4) spontaneously broken to SU(2) x U(1)

- Spectrum and interactions ->> CSO^{*}(4) theory of Dall'Agata et al

Construction follows the pattern: explicit breaking —> spontaneous breaking

Many exciting developments and we should be looking forward to more in the future