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The knowledge of string theory perturbation is important for
understanding many aspects of quantum and classical gravity

» The ultraviolet behaviour of N' = & (maximal)
supergravity in various dimensions up three loop order has
been derived from a low-energy limit of superstring theory
amplitude [Green, Schwarz, Brink; Green, Russo, Vanhove; Pioline]

» Match of the discontinuities of N’ = 4 amplitude with the
low-energy limit of the flat-space AdSs x S° string theory
amplltude [Alday, Bissi, Perlmutter]

» The double copy formula has its origin in string theory.
This has important application to the physics of
gl‘aVltathl’lal waves. [many talks at this workshop]
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Low energy expansion of string amplitudes

[stieberger] noticed that the low-energy expansion of closed
string tree-level amplitudes involve only single-valued multiple
zeta values,
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Whereas open string amplitudes have all zeta values in its
low-energy expansion
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Brown’s single-valued multiple zeta values

Single-valued MZV are the value at z = 1 of single-valued
multiple polylogarithms Liy] . (z) on C\{0, 1}:
Csv(k1 youen skr) = LI]SQ:

Csv(2n) =0; Csv(2n+1)=2¢(2n+1); nelN
At weight 11 a O-basis has dimension 9

((3,5,3), (8,5)¢(3), ¢(3)2¢(5), ¢(11),
C(2)e(3)°, ¢(2)*¢(3), ¢(2)°¢(5), ¢(2)%¢(7), ¢(2)¢(9).
the basis of single-valued MZVs has dimension 3 sown; schnetz)
Csv(3,5,3) = 2¢(3,5,3) — 2¢(3)(3,5) — 104(3)%¢(5),

ZvSV (3)2CSV(5)5 CSV(1 1 )

[Schlotterer, Stieberger; Stieberger,
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Tree-level closed string amplitudes

Any closed string tree-level amplitudes (bosonic, type 11
superstring, heterotic string) can be decomposed on partial
amplitudes

N+1
Mn43(s, €) = <V1(0) H JdeiV(Wr,Wr)VN+2(1)VN+3(OO)>

r=2

— Z Cr(s, e)MN+3(sanTaﬁr)

c.(s, €) rational functions of kinematic invariant, polarisation
tensors, and colour factors

The partial amplitudes are generic building blocks to any closed
string amplitudes
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Closed string amplitudes from correlators

MN+3(S,n,ﬁ) - 9N (1 ’ 1 )
is z = 1 value of CFT correlators (V special polarisation
strings vop)

In(z,z2) =

N N - B | _
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r=2
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It is important that difference between the holomorphic and
anti-holomorphic exponent are integer (spins)
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Holomorphic factorisation
CFT correlator decompose on conformal blocks

(N+1)!

Sn(z.2) = ) Groli(a,b,c;g;2)1(a, b, ¢;

r,s=1
The conformal block are the ordered integrals
N

I(G,p)(a,b,c;g;z) J 1_[(11/\)J
A(o,p) j=1

9;

z

)

H Wy — w9 Hwam - )bm (Wi — z)°™,

mn

integrated along the real line

Afo,p) =10 <Wp(1) SRR <Wp(s) <z< 1 gwo‘(ﬂ

Their value at z = 1 are open string amplitudes



Monodromies

As CFT correlator G (z, z) is single-valued in C

(N+1)!
Sn(z.2)= )  GrsIi(a,b,c;g;2)1(a, 5,8 §;2)
r,s=1
The integrals I, (- - - ; z) have monodromies

0 /1 00 )
L(-52) 2 ) (1)Ll ;2)

Z* S
The monodromy matrices go and gy are the same for
I.(a,b,c;g;z) and I.(a,b,C;g;2) becausea—&EZN,
b—bezZNc—cezZN.g—gezZ =
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Monodromies around z = 0
(- ;z) have diagonal monodromies around z = 0

(N-+1)!

9]\](2,5) — Z Gr,sIr(asbaC;g Z) ( b é é 2)

r,s=1

This imposes that the matrix G, has the bloc diagonal form

Gy 0
Gn=1] 0 Gl(f)
0

0

0

0
(3)
N

G

> G](j " with i = 1, 3 are real square matrices of size N!

> G](f " are diagonal matrix of size (N — 1) N!
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Monodromies around z = 1
The monodromies of [..(- - - ;z) around z = 1 are not diagonal
but J.(a,b,c;g;z) = I,(a,b,c;g;1 — z) have diagonal

monodromies around z = 1

(N+1)!

Sn(z,z)= )  GidJrla,b,c;0;2)]:(a,b,€;8;2)

r,s=1

therefore
G (1)

G](f " are diagonal matrix of size (N — 1) N
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Monodromies constraints

The two sets of integral are related by linear relations derived
using the contour deformation method of [E5errum-Bonhr,

Damgaard, Vanhove]

(N+1)!
I.(a,b,c;g9;2) = Z S(A,B,C;G),*]+(a,b,c;g;z)

r=1

We need to solve the linear system

Gl 0 o
S(A,B,C;G)| 0 G& o0 [S(A,B,C;G)
0o o GY

must have the above block diagonal form of G,
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The linear system has unique solution up to an scale

Matching the closed string partial amplitude determines
the scale factor, therefore there is no ambiguities

The coefficients of the matrices G and G N are rational
functions sin(7te’x) where x are linear combination of
kinematic invariants. This is a non-local version of the
momentum kernel

The small o’ expansion of the I,(--- ;z)and |.(--- ;z) are
on multiple polylogarithm with coefficients polynomials of
MZV’s and 27ri.

The proof is constructive as it is for CFT minimal models

[Dotsenko, Fateev]



Matching closed string amplitudes

At z = 1 we get the colour-ordered open string amplitudes

Jiey(a,b,c;9;1) = Angs(o(1,...,N+1),1,N+2,N+3;n)
Jio,0)(a;b,c;9;1) =0

Mnis(sni)= Y Gop

0,pECN
X Anis(0(2,...,N+1),1, N+2,N+3;n)
x Ansa(p(2,...,N+1),1,N+2 N+3;1),

The o’ has only single-valued multiple zeta values as the
valuation at z = 1 of combination of single-valued multiple
polylogarithms



Remarks

» It is not necessary that the total amplitude is given by the
special value at z = 1 of a single-valued correlation
function. It is enough that each partial amplitude arises this
way

» a given order in the «’-expansion can mix single-valued
multiple zeta values of different way (due to tachyonic
pole in the kinematic coefficients c.(s, €) for
heterotic-string amplitudes)

» We mathematically prove that each of these convergent
integrals, i.e. the coefficients of the small «’-expansion, is
a single-valued multiple-zeta value. This is done by
repeatedly applying Lemma D.1 of part II of the paper
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Four point case

The partial amplitudes of four points tree-level closed string
amplitudes are (114, 1;; in Z)

My(s,n,n) —J d2W|W|2(X/k1'k2H 7W|20c’k2'k3
C
% W“12V_\)ﬁ12(1 _ W)n23(1 _ V-V)ﬁzg )

and the single-valued correlator

91(z,2) IJ W (w—1)P (w—z) % (W—1)®" (W—2) ¢ dw
c

such that G4 (1,1) = Mu(s,n, 1)
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Four point case: holomorphic factorisation

_ oo N , b, c;
S1(z,2) = (Ji1),0) (@, b,62) Jip,(1))(a,b,¢;2)) Gy (}Egé?iggbig)

with
__sin(rt(A1+B4+Cq))sin(tA4) 0
A in(7t(B1+C
G = Sm(ﬂ(o1+ v __sin(tCy) sin(B1)
sin(7t(B1+Cq))

The |, integrals map at z — 1 to the open string amplitudes
Jine(a,b,c;1) = Ag(2,1,3,4;n);
Jo.()(a,b,c;1) =0.

The value at z = 1 gives My(s,n,n) = G¢(1, 1) gives the
non-local version of the KLT relations given in sjcuum sobe. Damgard,

Vanhove]

- sin(2mta’ky - ko) sin(2mta'ks - kq)
M , I, — . A 25 133545
4(8 " n) Sln(27'[06,k2 . kg) | 4( n{')ll
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Gravitational Compton scattering

X g gl v v Y v

2
|l - A
x
X 4 X X X X 56 X

The gravity Compton scattering is a product of two abelian
QED Compton amplitudes [Bjerrum-Bohr, Donoghue,

Vanhove]

(p1 - k1)(p1 - ko)

<(1324)4,(1324
Da— As(1324)A0(1324)

M(X°g — X°g) =GN

This expression was particular useful when evaluation the
post-Minkowskian correction from one-loop amplitude
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Conclusion

» The construction clarifies the role of the momentum kernel
in the single-valued projection & is one block of
GnS(ALB,C;G)

> Notice that the &’ expansion does not need to have uniform
weight: tree-level heterotic string from the tachyonic pole,
or genus two type I expansion [Green, Vanhove]

» Closed string amplitude are special value single-valued
CFT correlators, and open strings are multivalued
conformal block extended to higher genus

» The low-energy expansion of genus one closed string
amplitudes has single-valued modular graph functions

[D’Hoker, Green, Gurdogan, Vanhove; Zerbini; Brown; Gerken, Kleinschmidt, Schlotterer]

» Single-valued modular graph functions in degeneration
limits of genus-two amplitudes Hoker, Green, Piotine]



