From Coalescing Binary Black Holes to Quantum Amplitudes, and Back

Thibault Damour

Institut des Hautes Etudes Scientifiques

QCD Meets Gravity IV Nordita, Stockholm, Sweden 10-14 December 2018

LIGO Raw Data for First Binary Black Hole Events

LIGO-Virgo data analysis

Various levels of search and analysis of signals:

Online trigger searches:

CoherentWaveBurst Time-frequency (Wilson, Meyer, Daubechies-Jaffard-Journe, Klimenko et al.) Omicron-LALInference sine-Gaussians Gabor-type wavelet analysis (Gabor,...,Lynch et al.) Matched-filter: PyCBC (f-domain), gstLAL (t-domain)

Offline data analysis:

Generic transient searches Binary coalescence searches

Here: focus on matched-filter definition

(crucial for high SNR, significance assessment, and parameter estimation)

Basic Physico-Mathematical Tools Having Allowed one to Predict GW signals from Coalescing Binary Black Holes

Matched Asymptotic Expansion approach to the motion of strongly self-gravitating bodies

Post-Minkowskian (PM) approximation theory to the motion of binary systems -> binary pulsars $\frac{dP}{dt} = -\frac{192\pi}{5c^5} \left(\frac{2\pi G}{P}\right)^{\frac{5}{3}} \mu M^{\frac{2}{3}} \frac{1 + \frac{73}{24}e^2 + \frac{37}{96}e^4}{(1 - e^2)^{\frac{7}{2}}}$

Post-Newtonian (PN) approximation theory to the motion of binary systems

PN-matched Multipolar post-Minkowskian (MPM) approximation theory to the GW emission of binary systems

Effective One-Body (EOB) Approach to coalescing binary black holes (and binary neutron stars)

Hyperbolic Systems for Einstein's equations

Numerical Relativity (NR) simulations of coalescing binary black holes (and binary neutron stars)

Challenge: Motion of Strongly Self-gravitating Bodies (NS, BH)

Multi-chart approach to motion of strong-self-gravity bodies, and matched asymptotic expansions [EIH '38], Manasse '63, Demianski-Grishchuk '74, D'Eath'75, Kates '80, Damour '82

Useful even for weakly self-gravitating bodies, i.e. "relativistic celestial mechanics", Brumberg-Kopeikin '89, Damour-Soffel-Xu '91-94

Combine two expansions in two charts:

 $g_{\mu\nu}(x) = \eta_{\mu\nu} + Gh^{(1)}_{\mu\nu}(x) + G^2h^{(2)}_{\mu\nu}(x) + \dots G_{\alpha\beta}(x) = G^{(0)}_{\alpha\beta}(x) + G^{(1)}_{\alpha\beta}(x)_8 + \dots$

Skeletonization : $T_{\mu\nu} \rightarrow \text{point-masses}$ (Mathisson '31) delta-functions in GR : Infeld '54, Infeld-Plebanski '60 justified by Matched Asymptotic Expansions (« Effacing Principle » Damour '83 possible internal-structure dependence in strong self-gravity objects (NSs, BHs) only arise at 5PN= 5-loop level) UV divergences linked to self-field effects (loops on external lines) [Dirac, 1938] QFT's analytic (Riesz '49) or dimensional regularization (Bollini-Giambiagi '72, t'Hooft-Veltman '72) imported in GR (Damour '80, Damour-Jaranowski-Schäfer '01, …)

Feynman-like diagrams and

« Effective Field Theory » techniques

Bertotti-Plebanski '60,

Damour-Esposito-Farèse '96,

Goldberger-Rothstein '06, Porto '06, Gilmore-Ross' 08, Levi '10,

Foffa-Sturani '11 '13, Levi-Steinhoff '14, '15

Reduced Worldline Action in Electrodynamics (Fokker 1929)

$$S_{\text{tot}}[x_a^{\mu}, A_{\mu}] = -\sum_a \int m_a ds_a + \sum_a \int e_a dx_a^{\mu} A_{\mu}(x_a) - \int d^D x \frac{1}{16\pi} F_{\mu\nu} F^{\mu\nu} + S_{\text{gf}}$$

« Integrate out » the field A_mu in the total (particle+field) action

time-symmetric Green function G.

$$G(x) = \delta(-\eta_{\mu\nu}x^{\mu}x^{\nu}) = \frac{1}{2r} \left(\delta(t-r) + \delta(t+r)\right) \; ; \; \Box G(x) = -4\pi\delta^4(x)$$

The effective action S_eff(x_a) was heavily used in the (second) Wheeler-Feynman paper (1949) together with similar diagrams to those used by Fokker

9

Reduced Action in Gravity and its Diagrammatic Expansion

either
$$S_{\text{eff}}^{\text{class}}[x_a(s_a)] = [S_{\text{pm}} + S_{\text{EH}} + S_{\text{gf}}]_{g_{\mu\nu}(x) \to g_{\mu\nu}^{\text{gf}}[x_a(s_a)]}$$

 $e^{rac{i}{\hbar}S_{ ext{eff}}^{ ext{quant}}} = \int Dg_{\mu
u}\,e^{rac{i}{\hbar}(S_{ ext{pm}}+S_{ ext{EH}}+S_{ ext{gf}})}.$

or

Damour-Esposito-Farese '96

Goldberger-Rothstein '06

Needs gauge-fixed* action and time-symmetric Green function G.*E.g. Arnowitt-Deser-Misner Hamiltonian formalism or harmonic coordinates.Perturbatively solving (in dimension D=4 - eps) Einstein's equations to get the equations of motion and the action for the conservative dynamics

$$g = \eta + h$$

$$S(h,T) = \int \left(\frac{1}{2}h\Box h + \partial\partial hhh + \dots + (h + hh + \dots)T\right)$$

$$\Box h = -T + \dots \rightarrow h = GT + \dots$$

$$S_{red}(T) = \frac{1}{2}TGT + V_3(GT, GT, GT) + \dots$$
Slow Motion
(PN) expansion:
in powers of 1/c^2:
$$IPN= (v/c)^{A_2}: PN= (v/c)^{A_4}, etc$$

$$O(G)= Newtonian + (v/c)^{A_2} = 1 \log p$$

$$IPN= (v/c)^{A_2}: PN= (v/c)^{A_4}, etc$$

$$O(G)= Newtonian + (v/c)^{A_1} = 1 \log p$$

$$IPN= (v/c)^{A_2} = 1 \log p$$

It has been explicitly shown that S_eff was UV finite (in ADM gauge, and in dim.reg.) at 3 loops (Damour-Jaranowski-Schäfer '01) and 4 loops (Damour-Jaranowski-Schäfer '14, Jaranowski-Schäfer '15)

There appear IR divergences at 4PN (4 loop) linked to non-locality (Blanchet-Damour '88).

Post-Newtonian Equations of Motion [2-body, wo spins]

- 1PN (including v²/c²) [Lorentz-Droste '17], Einstein-Infeld-Hoffmann '38
- 2PN (inc. v⁴/c⁴) Ohta-Okamura-Kimura-Hiida '74, Damour-Deruelle '81 Damour '82, Schäfer '85, Kopeikin '85
- 2.5 PN (inc. v⁵/c⁵) Damour-Deruelle '81, Damour '82, Schäfer '85, Kopeikin '85
- 3 PN (inc. v⁶/c⁶) Jaranowski-Schäfer '98, Blanchet-Faye '00, Damour-Jaranowski-Schäfer '01, Itoh-Futamase '03, Blanchet-Damour-Esposito-Farèse' 04, Foffa-Sturani '11
- 3.5 PN (inc. v⁷/c⁷) Iyer-Will '93, Jaranowski-Schäfer '97, Pati-Will '02, Königsdörffer-Faye-Schäfer '03, Nissanke-Blanchet '05, Itoh '09
- 4PN (inc. v⁸/c⁸) Jaranowski-Schäfer '13, Foffa-Sturani '13,'16 Bini-Damour '13, Damour-Jaranowski-Schäfer '14, Bernard et al'16

New feature : non-locality in time (Blanchet-Damour'88)

Inclusion of spin-dependent effects: Barker-O' Connell'75, Faye-Blanchet-Buonanno'06, Damour-Jaranowski-Schaefer'08, Porto-Rothstein '06, Levi '10, Steinhoff-Hergt-Schaefer '10, Steinhoff'11, Levi-Steinhoff'15-18

2-body Taylor-expanded N + 1PN + 2PN Hamiltonian

$$\begin{split} H_{\rm N}(\mathbf{x}_{a},\mathbf{p}_{a}) &= \frac{\mathbf{p}_{1}^{2}}{2m_{1}} - \frac{1}{2}\frac{Gm_{1}m_{2}}{r_{12}} + (1 \leftrightarrow 2) \\ c^{2}H_{\rm 1PN}(\mathbf{x}_{a},\mathbf{p}_{a}) &= -\frac{1}{8}\frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{3}} + \frac{1}{8}\frac{Gm_{1}m_{2}}{r_{12}}\left(-12\frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + 14\frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{m_{1}m_{2}} + 2\frac{(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}m_{2}}\right) \\ &+ \frac{1}{4}\frac{Gm_{1}m_{2}}{r_{12}}\frac{G(m_{1}+m_{2})}{r_{12}} + (1 \leftrightarrow 2), \\ c^{4}H_{\rm 2PN}(\mathbf{x}_{a},\mathbf{p}_{a}) &= \frac{1}{16}\frac{(\mathbf{p}_{1}^{2})^{3}}{m_{1}^{5}} + \frac{1}{8}\frac{Gm_{1}m_{2}}{r_{12}}\left(5\frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{4}} - \frac{11}{2}\frac{\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2}}{m_{1}^{2}m_{2}^{2}} - \frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} + 5\frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} \\ &- 6\frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}^{2}m_{2}^{2}} - \frac{3}{2}\frac{(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}}\right) \\ &+ \frac{1}{4}\frac{G^{2}m_{1}m_{2}}{r_{12}^{2}}\left(m_{2}\left(10\frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + 19\frac{\mathbf{p}_{2}^{2}}{m_{2}^{2}}\right) - \frac{1}{2}(m_{1}+m_{2})\frac{27(\mathbf{p}_{1}\cdot\mathbf{p}_{2}) + 6(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}m_{2}}\right) \\ &- \frac{1}{8}\frac{Gm_{1}m_{2}}{r_{12}}\frac{G^{2}(m_{1}^{2} + 5m_{1}m_{2} + m_{2}^{2})}{r_{12}^{2}} + (1 \leftrightarrow 2), \end{split}$$

11

2-body Taylor-expanded 3PN Hamiltonian [DJS 01]

$$\begin{split} c^{6}H_{3\mathrm{PN}}(\mathbf{x}_{a},\mathbf{p}_{a}) &= -\frac{5}{128}\frac{(\mathbf{p}_{1}^{2})^{4}}{m_{1}^{2}} + \frac{1}{32}\frac{Gm_{1}m_{2}}{r_{12}}\left(-14\frac{(\mathbf{p}_{1}^{2})^{3}}{m_{1}^{6}m_{1}^{6}} + 4\frac{((\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2} + 4\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2})\mathbf{p}_{1}^{2}}{m_{1}^{4}m_{2}^{2}} + 6\frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{4}m_{2}^{2}} \\ &\quad -10\frac{(\mathbf{p}_{1}^{2}(\mathbf{n}_{1}\cdot\mathbf{p}_{2})^{2} + \mathbf{p}_{2}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2})\mathbf{p}_{1}^{2}}{m_{1}^{4}m_{2}^{2}} + 24\frac{\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}^{4}m_{2}^{2}} \\ &\quad +2\frac{\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{4}m_{2}^{2}} + \frac{(7\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2} - 10(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}^{4}m_{2}^{4}} \\ &\quad +\frac{(\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2} - 2(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{m_{1}^{4}m_{2}^{2}} + 15\frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{4}m_{2}^{4}} \\ &\quad -18\frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{3}}{m_{1}^{3}m_{2}^{2}} + 5\frac{(\mathbf{n}_{1}\cdot\mathbf{p}_{1})^{3}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{3}}{m_{1}^{3}m_{2}^{2}} + \frac{G^{2}m_{1}m_{2}}{r_{12}^{2}} \left(\frac{1}{16}(m_{1} - 27m_{2})\frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{4}} \\ \\ &\quad -18\frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{3}}{m_{1}^{3}m_{2}^{2}} + 5\frac{(\mathbf{n}_{1}\cdot\mathbf{p}_{1})^{3}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{3}m_{2}^{2}} \right) \\ &\quad -18\frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{1}^{2}\cdot\mathbf{p}_{1})(\mathbf{n}_{2}\cdot\mathbf{p}_{2}) \\ &\quad -18\frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{1}^{2}\cdot\mathbf{p}_{2}) + \frac{1}{48}m_{2}\frac{25(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{3}m_{2}^{2}}} + \frac{17\mathbf{p}_{1}^{2}(\mathbf{n}_{1}\cdot\mathbf{p}_{1})^{2}}{r_{1}^{2}} + \frac{5}{12}\frac{(\mathbf{n}_{1}\cdot\mathbf{p}_{1})}{m_{1}^{3}} \\ &\quad -\frac{18}{m_{1}}\frac{(\mathbf{15}\mathbf{p}_{1}^{2}(\mathbf{n}_{1}\cdot\mathbf{p}_{2}) + \frac{1}{48}m_{2}\frac{25(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{m_{1}^{2}m_{2}^{2}}} + \frac{17\mathbf{p}_{1}^{2}(\mathbf{n}_{1}\cdot\mathbf{p}_{1})^{2}}{r_{1}^{2}} + \frac{5}{12}\frac{(\mathbf{n}_{1}\cdot\mathbf{p}_{1})}{m_{1}^{3}} \\ &\quad -\frac{18}{m_{1}}\frac{(\mathbf{15}\mathbf{p}_{1}^{2}(\mathbf{n}_{1}\cdot\mathbf{p}_{2}) + \frac{1}{m_{1}^{3}}m_{2}\frac{25(\mathbf{p}_{1}\cdot\mathbf{p}_{1})(\mathbf{n}_{1}\cdot\mathbf{p}_{2})}{m_{1}^{3}} \\ &\quad -\frac{18}{m_{1}}\frac{(\mathbf{15}\mathbf{p}_{2$$

10

2-body Taylor-expanded 4PN Hamiltonian [DJS, 2014]

(A3)

$$\begin{split} \epsilon^8 H_{4PN}^{\text{laca}}(\mathbf{x}_a,\mathbf{p}_a) = & \frac{7(\mathbf{p}_1^2)^5}{256m^2} + \frac{Gm_1m_2}{r_{12}} K_{46}(\mathbf{x}_a,\mathbf{p}_a) + \frac{G^2m_1m_2}{r_{12}^2} m_1 H_{46}(\mathbf{x}_a,\mathbf{p}_a) \\ & + \frac{G^3m_1m_2}{r_{12}^3} \left(m_1^2 H_{44}(\mathbf{x}_a,\mathbf{p}_a) + m_1m_2 H_{442}(\mathbf{x}_a,\mathbf{p}_a) \right) \\ & + \frac{G^4m_1m_2}{r_{12}^4} \left(m_1^2 H_{42}(\mathbf{x}_a,\mathbf{p}_a) + m_1^2m_2 H_{422}(\mathbf{x}_a,\mathbf{p}_a) \right) \\ & + \frac{G^5m_1m_2}{r_{12}^5} H_{40}(\mathbf{x}_a,\mathbf{p}_a) + (1 \leftrightarrow 2), \end{split}$$

45	5(p ₁ ²) ^a S(n ₁₂ ·p	() (m ¹⁵ .h ²) (1	$p_1^{(1)} = 15(n_{12} \cdot p_2)^{(1)}$	(p ₁)' 9/n ₁₂ .p	$(n_{12} \cdot p_2) (p_1) (p_1)$	P2]
ampa)=1	28 m ² ₁	640% 21	51 <i>m</i> ⁶ <i>m</i>	6	$5m_1^2m_2^2$	
3	$(\mathbf{p}_1^2)^2 (\mathbf{p}_1 \ \mathbf{p}_2)^2$,	15(n ., p1) ² (g	1 ² p ₃ ² 2 (p ₁ ²) ² p	35(n ₁₂ p ₁) ³ (n	(12 P2) ²	
	32m*/m2	$64m_1^6m_2^2$	$64m_1^6m_2^2$	256m ³ ra	ę.	
2	$5(\mathbf{n}_{12} \cdot \mathbf{p}_1)^3 (\mathbf{n}_{12} \cdot \mathbf{p}_1)^3$	$(p_2)^3 p_1^2 = 23 (n_1)^3 p_2^2$	12*P](n ₁₂ *P ₂) ² ()	$(\mathbf{p}_{1}^{2})^{2} = 85(\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{2}$	$((n_{12}\cdot p_2)^2(p_1\cdot p_2))$	
22	$123a_1^3a_2^3$	in the second	256w [n]	2	56m [m]	
4	$5(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2 (\mathbf{n}_{12} \cdot \mathbf{p}_1)^2$	P2)2P1(P1:P2)	$(n_{12}\cdot p_2)^2 (p_1^2)^2$	$(\mathbf{p} \cdot \mathbf{p}_2) = 25(\mathbf{n}_2)$	$(\mathbf{p}_1)^3 (\mathbf{n}_{12}, \mathbf{p}_2)(\mathbf{p}_1)$	P2)2
	128 @	5 m 1	256 <i>m</i> fm	3	6-1/2 1/2 2	
+7	(n ₁₂ p ₁)(n ₁₂ p 64m ⁴ ₁	2)pî(p1 p2) ² n3	$\frac{3(n_{12}\cdot p_1)^2(p_1\cdot p)}{64m_1^5m_1^3}$	$\frac{2}{64m_1^5m_2^3}$	256m ⁵ /m ¹ / ₁₂ p ₁) ⁵ (n ₁) 256m ⁵ /m ² / ₁	2 p 2)p]
7	(n ₁₂ ·p ₁) ³ /n ₁₂ ·p)p ² ₁ p ² ₁ 25(n	$(p_1, p_1)(n_1, p_2)(p_1)$	2) ² p ² / ₂ 23(n ₁₂ ·p ₁) ⁴ (p ₁ · p ₂) p ²	
	128641942		$256m_1^5m_2^3$	256	·w] ·w]	
. 7	$(u_{12},\mathbf{p}_1)^2 \mathbf{p}_1^2 (\mathbf{p}_1)$	$\{p_2\}p_2^2 = 7(p_1^2)$	$^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})\mathbf{p}_{2}^{2}=5(\mathbf{n}_{1}\cdot\mathbf{p}_{2})\mathbf{p}_{2}^{2}=5(\mathbf{n}_{1}\cdot\mathbf{p}_{2}\cdot\mathbf{p}_{2})\mathbf{p}_{2}^{2}=5(\mathbf{n}_{1}\cdot\mathbf{p}_{2}\cdot\mathbf{p}_$	$(\mathbf{a}_{12} \cdot \mathbf{p}_2)^* (\mathbf{a}_{12} \cdot \mathbf{p}_2)^* \mathbf{p}_2$	$(\mathbf{n}_1, 7(\mathbf{n}_1, \mathbf{p}_2)^2)^2$)3
	128.07 07	15	6an ⁵ an}	64m ⁺ m ⁺ ₂	$6424_1^4m_2^4$	
0	$(\mathbf{n}{12}, \mathbf{p}_1)(\mathbf{n}_{12}, \mathbf{p}_2) = \frac{4m^4m^2}{4m^4m^2}$	³ p ₁ ² (p ₁ p ₂) ₁ ($\mathbf{n} \ge (\mathbf{p}_2)^2 \mathbf{p}^2 (\mathbf{p}_1 \cdot \mathbf{p}_2)$ $16m_1^4 m_2^4$	$(p_2)^2 = 5(n_{-2} p_1)^4 (n_{-2} $	$(r_1^2, \mathbf{p}_2)^2 \mathbf{p}_2^2 + \frac{21(\mathbf{n}_1)^2}{r_1^2}$	64r3 ⁴ rr ⁴ 64r3 ⁴ rr ⁴
3	$(n{12},p_2)^2 (p_1^2)^2 p$	$(\mathbf{n}_{12} \cdot \mathbf{p}_1)^3$	n ₁₂ . p ₂)(p ₁ . p ₂) p ²	$+ \frac{(n_{12},p_1)(n_{12},p_2)}{(n_{12},p_2)(n_{12},p_2)}$	$p_2(\mathbf{p}_1, \mathbf{p}_2)\mathbf{p}_1^2$	$(n_{12} \cdot p_1)^2 (p_1 \cdot p_2)^2 p_1^2$
	32m ⁴ ₁ m ⁵ ₂		4na ⁴ na ⁴ 2	16m	ៅលថ្មី	Seu 1 1.12
р	(p1.p2)'p2 7	$(n_{12} \cdot p_1)^4 (p_2)$	$3(n_{12} \cdot p_1)^2 p_1^2(p_1)$	$(\mathbf{p}_2^2)^2 = 7(\mathbf{p}_1^2)^2 (\mathbf{p}_2^2)^2$		(44)
	S 7 4	5.4 m ⁻ m ⁻¹	12 m 4 m 4	78m ⁴ m ⁴	100	Grane.

$$\begin{split} H_{46}(\mathbf{x}_{0},\mathbf{p}_{0}) = & \frac{369(\mathbf{n}_{12}-\mathbf{p}_{1})^{4}}{160m_{1}^{2}} - \frac{889(\mathbf{n}_{12}-\mathbf{p}_{1})^{2}\mathbf{p}_{1}^{2}}{182\,\sigma^{4}} + \frac{69(\mathbf{n}_{12}-\mathbf{p}_{1})^{2}(\mathbf{p}_{1}^{2})^{2}}{128m_{1}^{2}m_{2}} - \frac{549(\mathbf{n}_{12}-\mathbf{p}_{1})^{2}(\mathbf{n}_{12}-\mathbf{p}_{2})}{128m_{1}^{2}m_{2}} \\ & + \frac{67(\mathbf{n}_{12}-\mathbf{p}_{1})^{2}(\mathbf{n}_{12}-\mathbf{p}_{2})\mathbf{p}_{1}^{2}}{15m_{1}^{2}m_{2}} - \frac{167(\mathbf{n}_{12}-\mathbf{p}_{1})(\mathbf{n}_{2}-\mathbf{p}_{2})(\mathbf{p}_{1}^{2})^{2}}{128m_{1}^{2}m_{2}} + \frac{1547(\mathbf{n}_{12}-\mathbf{p}_{1})^{2}(\mathbf{p}_{1}-\mathbf{p}_{2})}{256m_{1}^{2}m_{2}} - \frac{851(\mathbf{n}_{12}-\mathbf{p}_{1})^{2}(\mathbf{p}_{1}-\mathbf{p}_{2})}{128m_{1}^{2}m_{2}} \\ & + \frac{1099(\mathbf{p}_{1}^{2})^{2}(\mathbf{p}_{1}+\mathbf{p}_{2})}{255m_{1}^{2}m_{2}} - \frac{5253(\mathbf{n}_{12}-\mathbf{p}_{1}+^{4}(\mathbf{n}_{2}-\mathbf{p}_{2})^{2}}{1280m_{1}^{4}m_{2}^{2}} + \frac{1067(\mathbf{n}_{12}-\mathbf{p}_{1})^{2}(\mathbf{n}_{12}-\mathbf{p}_{2})^{2}\mathbf{p}_{1}^{2}}{480m_{1}^{4}m_{2}^{2}} - \frac{4567(\mathbf{n}_{12}-\mathbf{p}_{1})^{2}(\mathbf{p}_{1}-\mathbf{p}_{2})}{3840m_{1}^{4}m_{2}^{2}} \\ & - \frac{3571(\mathbf{n}_{12}-\mathbf{p}_{1})^{2}(\mathbf{n}_{11}-\mathbf{p}_{2})(\mathbf{p}-\mathbf{p}_{1})}{250m_{1}^{4}m_{2}^{2}} + \frac{3073(\mathbf{n}_{12}-\mathbf{p}_{1})^{2}(\mathbf{n}_{12}-\mathbf{p}_{1})^{2}\mathbf{p}_{1}^{2}(\mathbf{p}-\mathbf{p}_{2})}{480m_{1}^{4}m_{2}^{2}} + \frac{4345(\mathbf{n}_{12}-\mathbf{p}_{1})^{2}(\mathbf{p}_{1}-\mathbf{p}_{2})^{2}}{1230m_{1}^{2}m_{2}^{2}} \\ & - \frac{3461\mathbf{p}_{1}^{2}(\mathbf{p}_{1}-\mathbf{p}_{2})^{2}}{3840m_{1}^{4}m_{2}^{2}} + \frac{10673(\mathbf{n}_{12}-\mathbf{p}_{1})^{2}\mathbf{p}_{1}^{2}}{999(\mathbf{n}_{12}-\mathbf{p}_{1})^{2}\mathbf{p}_{1}^{2}\mathbf{p}_{1}^{2}} - \frac{2081(\mathbf{p}_{1}^{2})^{2}\mathbf{p}_{1}^{2}}{1230m_{1}^{2}m_{2}^{2}} \\ & - \frac{3461\mathbf{p}_{1}^{2}(\mathbf{p}_{1}-\mathbf{p}_{2})^{2}}{384m_{1}^{2}m_{2}^{2}} + \frac{1999(\mathbf{n}_{12}-\mathbf{p}_{1})^{2}(\mathbf{p}_{1}-\mathbf{p}_{2})}{3840m_{1}^{4}m_{2}^{2}} - \frac{13(\mathbf{n}_{12}-\mathbf{p}_{1})^{4}(\mathbf{n}_{12}-\mathbf{p}_{2})^{3}}{3840m_{1}^{2}m_{2}^{2}} \\ & + \frac{191(\mathbf{n}_{12}-\mathbf{p}_{1})(\mathbf{n}_{12}-\mathbf{p}_{2})^{2}\mathbf{p}_{1}^{2}}{19(\mathbf{n}_{12}-\mathbf{p}_{1})^{2}(\mathbf{p}_{1}-\mathbf{p}_{2})} - \frac{5(\mathbf{n}_{12}-\mathbf{p}_{1})^{2}\mathbf{p}_{1}^{2}}{384m_{1}m_{2}^{2}} \\ & + \frac{10(\mathbf{n}_{12}-\mathbf{p}_{1})(\mathbf{n}_{12}-\mathbf{p}_{2})^{2}\mathbf{p}_{1} + \frac{77(\mathbf{p}_{1}-\mathbf{p}_{2})^{2}}{384m_{1}m_{2}^{2}} + \frac{533(\mathbf{n}_{1}-\mathbf{p}_{1})^{2}(\mathbf{n}_{12}-\mathbf{p}_{2})^{2}\mathbf{p}_{1}^{2}\mathbf{p}_{1}^{2}} \\ & + \frac{10(\mathbf{$$

Huix B	$\mathbf{h} = 5027(\mathbf{n}_{12} \cdot \mathbf{p}_1)^4 = 22993(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2 \mathbf{p}_1^2 = 6695(\mathbf{p}_1^2)^2 = 3191(\mathbf{n}_{12} \cdot \mathbf{p}_1)^3(\mathbf{n}_{12} \cdot \mathbf{p}_2)$	
sa tel (sans R	$384 n_1^4$ $950 m^4$ $1152 n_1^4$ $640 m_1^2 m_2$	
	$+\frac{25561(\mathbf{n}_{2}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})\mathbf{p}_{1}^{2}}{+}\frac{3777(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{-}\frac{752969\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{-}$	
	$1920m_1^2m_2 = -384m_1^2m_2 = -28800m_1^2m_2$	
	$-\frac{16481(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2}{960^2 m^2} + \frac{94433(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2 \mathbf{p}_1^2}{4300 m^2 m^2} - \frac{103957(\mathbf{n}_{12} \cdot \mathbf{p}_1)(\mathbf{n}_{12} \cdot \mathbf{p}_2)(\mathbf{p}_1 \cdot \mathbf{p}_2)}{3400 m^2 m^2}$	
	$791(\mathbf{p}_1 \cdot \mathbf{p}_2)^2 = 26627(\mathbf{n}_{122} \cdot \mathbf{p}_2)^2 \mathbf{p}_1^2 = 118261(\mathbf{p}_1^2 \mathbf{p}_2^2 - 105/\mathbf{p}_2^2)^2$	
	$400wr_1^2 m_2^2$ $1600m_1^2 m_3^2$ $4800wr_1^2 m_3^2$ $32m^2$	(A4c)
$H_{442}(\mathbf{x}_{a},\mathbf{p}_{a}) =$	$= \left(\frac{2749\pi^2}{3.92} - \frac{211189}{19200}\right) \frac{(\mathbf{p}_1^2)^2}{m_1^4} + \left(\frac{63347}{1600} - \frac{1059\pi^4}{1024}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2 \mathbf{p}_1^2}{m^4} + \left(\frac{375z^2}{8192} - \frac{23533}{1280}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_1)^4}{m^4}$	
	$+ \left(\frac{10631 x^2}{8192} - \frac{1918349}{57600}\right) \frac{(\mathfrak{p}_1 \cdot \mathfrak{p}_2)^2}{m_1^2 m_2^2} + \left(\frac{13723 x^2}{16384} - \frac{2492417}{57600}\right) \frac{\mathfrak{p}_1^2 \mathfrak{p}_2^2}{m_1^2 m_2^2}$	
	$+\left(\frac{1411429}{19200}-\frac{1059z^2}{512}\right)\frac{(\mathbf{n}_{12}\cdot\mathbf{p}_2)^2\mathbf{p}_1^2}{m_1^2m_2^2}+\left(\frac{248991}{6400}-\frac{5153\pi^2}{2048}\right)\frac{(\mathbf{n}_{12}\cdot\mathbf{p}_1)(\mathbf{n}_{12}\cdot\mathbf{p}_2)(\mathbf{p}_1\cdot\mathbf{p}_2)}{m_1^2m_2^2}=$	
	$-\left(\frac{30383}{960}+\frac{36405\pi^2}{16384}\right)\frac{(\mathbf{n}_{-2}\cdot\mathbf{p}_1)^2(\mathbf{n}_{-2}\cdot\mathbf{p}_2)^2}{m_1^2m_2^2}+\left(\frac{1243717}{14400}-\frac{40483\pi^2}{16384}\right)\frac{\mathbf{p}_1^2(\mathbf{p}_1\cdot\mathbf{p}_2)}{m_1^3m_2}$	
	$+\left(\frac{2269}{60}+\frac{35655\pi^2}{16384}\right)\frac{(\mathbf{n}_{12}\cdot\mathbf{p}_1)^3(\mathbf{n}_{12}\cdot\mathbf{p}_2)}{m_1^3m_2}+\left(\frac{4310\pi^2}{16384}-\frac{39\pi^211}{6400}\right)\frac{(\mathbf{n}_{12}\cdot\mathbf{p}_1)(\mathbf{n}_{12}\cdot\mathbf{p}_2)\mathbf{p}_1^2}{m_1^3m_2}$	
	+ $\left(\frac{56955x^2}{16334} - \frac{1645983}{12200}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2(\mathbf{p}_1 \cdot \mathbf{p}_2)}{m_1^3 m_2},$	(A4d)
	$H_{*21}(\mathbf{x}_{\alpha},\mathbf{p}_{\alpha}) = \frac{64361\mathbf{p}_{1}^{2}}{4800m_{1}^{2}} - \frac{91(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{8m_{1}m_{2}} + \frac{105\mathbf{p}_{2}^{2}}{32m_{2}^{2}} - \frac{9841(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}}{1600m_{1}^{2}} - \frac{7(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{2m_{1}m_{2}},$	(A4e)
$\Omega_{422}(\mathbf{x}_a,\mathbf{p}_a)$ =	$-\left(\frac{1937033}{57600}-\frac{199177\pi^2}{49152}\right)\frac{\mathbf{p}_1^2}{m_1^2}+\left(\frac{176033\pi^2}{24576}-\frac{2864917}{57600}\right)\frac{(\mathbf{p}_1\cdot\mathbf{p}_2)}{m_1m_2}+\left(\frac{282351}{19200}-\frac{21837\pi^2}{8192}\right)\frac{\mathbf{p}_2^2}{m_2^2}$	
	$+ \left(\frac{698723}{19200} + \frac{21745\pi^2}{16384}\right) \frac{(\mathbf{n}_{12} - \mathbf{p}_1)^2}{m_1^2} + \left(\frac{63641\pi^2}{24576} - \frac{2712013}{19200}\right) \frac{(\mathbf{n}_{12} - \mathbf{p}_1)(\mathbf{n}_{-2} - \mathbf{p}_2)}{m_1m_2}$	
	$+\left(\frac{3200179}{57600}-\frac{28691\pi^2}{24576}\right)\frac{(\mathbf{n}_{12}\cdot\mathbf{p}_2)^2}{m_2^2},$	(A4Ê)
	$H_{43}(\mathbf{x}_a, \mathbf{p}_c) = -\frac{m_1^4}{16} + \left(\frac{6237\pi^2}{1024} - \frac{169799}{2400}\right)m_1^4m_1 + \left(\frac{24825\pi^2}{6144} - \frac{609427}{7200}\right)m_1^2m_2^2.$	(A4g)

$$H_{4\text{PN}}^{\text{nonloc}}(t) = -\frac{1}{5} \frac{G^2 M}{c^8} I_{ij}^{(3)}(t) \times \text{Pf}_{2r_{12}/c} \int_{-\infty}^{+\infty} \frac{\mathrm{d}v}{|v|} I_{ij}^{(3)}(t+v), \qquad 13$$

Perturbative Theory of the Generation of Gravitational Radiation

Einstein '16, '18 (+ Landau-Lifshitz 41, and Fock '55) : h_+ , h_x and quadrupole formula Relativistic, multipolar extensions of LO quadrupole radiation :

Sachs-Bergmann '58, Sachs '61, Mathews '62, Peters-Mathews '63, Pirani '64 Campbell-Morgan '71, $\nu = \frac{m_1 m_2}{(m_1 + m_2)^2}$

Campbell et al '75,

nonlinear effects:

Bonnor-Rotenberg '66, Epstein-Wagoner-Will '75-76 Thorne '80, .., Will et al 00 **MPM Formalism:**

Blanchet-Damour '86, Damour-lyer '91, Blanchet '95 '98 Combines multipole exp., Post Minkowkian exp., analytic continuation, and PN matching

$$x = \left(\frac{v}{c}\right)^2 = \left(\frac{G(m_1 + m_2)\Omega}{c^3}\right)^{\frac{2}{3}} = \left(\frac{\pi G(m_1 + m_2)f}{c^3}\right)^{\frac{2}{3}}$$

$$\begin{split} \mathcal{F} &= \frac{32c^5}{5G}\nu^2 x^5 \bigg\{ 1 + \left(-\frac{1247}{336} - \frac{35}{12}\nu \right) x + 4\pi x^{3/2} \\ &+ \left(-\frac{44711}{9072} + \frac{9271}{504}\nu + \frac{65}{18}\nu^2 \right) x^2 + \left(-\frac{8191}{672} - \frac{583}{24}\nu \right) \pi x^{5/2} \\ &+ \left[\frac{6643739519}{69854400} + \frac{16}{3}\pi^2 - \frac{1712}{105}\gamma_{\rm E} - \frac{856}{105}\ln(16x) \right. \\ &+ \left(-\frac{134543}{7776} + \frac{41}{48}\pi^2 \right) \nu - \frac{94403}{3024}\nu^2 - \frac{775}{324}\nu^3 \right] x^3 \\ &+ \left(-\frac{16285}{504} + \frac{214745}{1728}\nu + \frac{193385}{3024}\nu^2 \right) \pi x^{7/2} + \mathcal{O}\left(\frac{1}{c^8} \right) \bigg\} \,. \end{split}$$

Analytical GW Templates for BBH Coalescences ?

PN corrections to Einstein's quadrupole frequency « chirping » from PN-improved balance equation dE(f)/dt = -F(f)

$$\frac{d\phi}{d\ln f} = \frac{\omega^2}{d\omega/dt} = Q_{\omega}^N \widehat{Q}_{\omega}$$
$$Q_{\omega}^N = \frac{5c^5}{48\nu v^5}; \ \widehat{Q}_{\omega} = 1 + c_2 \left(\frac{v}{c}\right)^2 + c_3 \left(\frac{v}{c}\right)^2$$

 $\ensuremath{\overset{\scriptstyle <}{_{\scriptstyle \sim}}}$ slow convergence of PN $\ensuremath{\overset{\scriptstyle >}{_{\scriptstyle \sim}}}$

Brady-Creighton-Thorne'98:

inability of current computational
 techniques to evolve a BBH through its last
 ~10 orbits of inspiral » and to compute the
 merger

Damour-Iyer-Sathyaprakash'98: use resummation methods for E and F

Buonanno-Damour '99-00: novel, resummed approach: Effective-One-Body analytical formalism

Effective One Body (EOB) Method)

Buonanno-Damour 1999, 2000; Damour-Jaranowski-Schaefer 2000; Damour 2001; Damour-Nagar 2007; Damour-Iyer-Nagar 2009

Resummation of both the Hamiltonian, the waveform and radiation-reaction -> description of the coalescence + addition of ringdown (Vishveshwara 70, Davis-Ruffini-Tiomno 72)

Buonanno-Damour 2000

Predictions as early as 2000 :

continued transition, non adiabaticity, first complete waveform, final spin (OK within 10%), final mass

EOB: resumming the energetics of bound states of a two-body system (m_1,m_2,S_1,S_2) in terms of the energetics of the bound states of a particle of mass mu and spin S^{*} moving in some effective metric g(M,S)

Effective metric for non-spinning bodies: a nu-deformation of Schwarzschild

$$M = m_1 + m_2 \qquad \mu = \frac{m_1 m_2}{m_1 + m_2} \qquad \nu = \frac{\mu}{M} = \frac{m_1 m_2}{(m_1 + m_2)^2}$$
$$ds_{\text{eff}}^2 = -A(r;\nu) dt^2 + B(r;\nu) dr^2 + r^2 \left(d\theta^2 + \sin^2\theta \, d\varphi^2\right)$$

TWO-BODY/EOB "CORRESPONDENCE":

THINK QUANTUM-MECHANICALLY (J.A. WHEELER)

Bohr-Sommerfeld's Quantization Conditions (action-angle variables & **Delaunay Hamiltonian**)

Explicit 3PN EOB dynamics (Damour-Jaranowski-Schaefer '01)

A **simple**, but crucial transformation between the real energy and the effective one:

A **simple post-geodesic** effective mass-shell:

$$\mathcal{E}_{\mathrm{eff}} = rac{(\mathcal{E}_{\mathrm{real}})^2 - m_1^2 - m_2^2}{2(m_1 + m_2)}$$

$$g_{\rm eff}^{\mu\nu}\,P_{\mu}^{\prime}\,P_{\nu}^{\prime}+\mu^2\,c^2+Q(P_{\mu}^{\prime})=0\,,$$

$$ds_{\rm eff}^2 = -A(R;\nu)dt^2 + B(R;\nu)dR^2 + R^2(d\theta^2 + \sin^2\theta d\phi^2)$$

$$M = m_1 + m_2$$
, $\mu = \frac{m_1 m_2}{m_1 + m_2}$, $\nu = \frac{m_1 m_2}{(m_1 + m_2)^2} = \frac{\mu}{M}$

$$u \equiv \frac{GM}{R \, c^2}$$

$$A^{3PN}(u) = 1 - 2u + 2\nu u^3 + \left(\frac{94}{3} - \frac{41}{32}\pi^2\right)\nu u^4,$$

 $\overline{D}^{3PN}(u) = 1 + 6\nu u^2 + (52\nu - 6\nu^2) u^3,$

$$\widehat{Q}^{3\text{PN}} \equiv \frac{Q}{\mu^2 c^2} = (8\nu - 6\nu^2) u^2 \frac{p_r^*}{c^4}.$$

$$\begin{split} H_{N}(\mathbf{x}_{a},\mathbf{p}_{a}) &= \frac{\mathbf{p}_{1}^{2}}{2m_{1}^{2}} - \frac{1}{2} \frac{Gm_{1}m_{2}}{r_{12}} + (1 \leftrightarrow 2) \\ & c^{2}H_{198}(\mathbf{x}_{a},\mathbf{p}_{a}) = -\frac{1}{8} \frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{2}} + \frac{1}{8} \frac{Gm_{1}m_{2}}{r_{12}} \left(-12 \frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + 14 \frac{(\mathbf{p}_{1},\mathbf{p}_{2})(\mathbf{n}_{2},\mathbf{p}_{2})}{m_{1}m_{2}} \right) \\ & + \frac{1}{4} \frac{Gm_{1}m_{2}}{(m_{1},m_{2},m_{2})} \left(-12 \frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + 14 \frac{(\mathbf{p}_{1},\mathbf{p}_{2})(\mathbf{n}_{1},\mathbf{p}_{2})}{m_{1}m_{2}} \right) \\ & - \frac{6}{16} \frac{(\mathbf{p}_{1},\mathbf{p}_{2})(\mathbf{n}_{1},\mathbf{p}_{2},\mathbf{p}_{1})}{m_{1}^{2}m_{2}^{2}} - \frac{3}{(m_{1}^{2},\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} + 5 \frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{1},\mathbf{p}_{2},\mathbf{p}_{2})}{m_{1}^{2}m_{2}^{2}} \\ & - \frac{6}{9} \frac{(\mathbf{p}_{1},\mathbf{p}_{1})(\mathbf{n}_{1},\mathbf{p}_{2},\mathbf{p}_{1})}{m_{1}^{2}m_{2}^{2}} - \frac{3}{2} \frac{(\mathbf{p}_{1},\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} - \frac{3}{2} \frac{(\mathbf{p}_{1},\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} \right) \\ & + \frac{1}{4} \frac{G^{2}m_{1}m_{2}}{r_{12}^{2}} + (1 \leftrightarrow 2), \\ & + \frac{1}{4} \frac{G^{2}m_{1}m_{2}}{r_{12}^{2}} \left(m_{2}\left(10 \frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + 19 \frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} \right) - \frac{3}{2} (m_{1} + m_{2}) \frac{27(\mathbf{p}_{1} + \mathbf{p}_{2}) + 6(\mathbf{n}_{12} + \mathbf{p}_{1})(\mathbf{n}_{12} + \mathbf{p}_{2})}{m_{1}m_{2}} \right) \\ & - \frac{1}{8} \frac{Gm_{1}m_{2}}{r_{12}} \left(m_{2}\left(\frac{10}{m_{1}^{2}} \frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + 19 \frac{\mathbf{p}_{2}^{2}}{m_{1}^{2}} \right) - \frac{3}{2} (m_{1}^{2} + 10) \frac{27(\mathbf{p}_{1} + \mathbf{p}_{2})}{m_{1}m_{2}}} \frac{27(\mathbf{p}_{1} + \mathbf{p}_{2})(\mathbf{p}_{1} + \mathbf{p}_{2})}{m_{1}m_{2}} \right) \\ & - \frac{1}{8} \frac{Gm_{1}m_{2}}{r_{12}} \left(m_{1} + m_{2}\right) \frac{27(\mathbf{p}_{1} + \mathbf{p}_{2})}{m_{1}^{2}m_{1}^{2}} + \frac{1}{2} \frac{(\mathbf{p}_{1}(\mathbf{p}_{1},\mathbf{p}_{2}))}{m_{1}^{2}m_{2}}} \right) \\ & + \frac{1}{2} \frac{Gm_{1}m_{2}}}{(\mathbf{p}_{1}(\mathbf{p}_{1},\mathbf{p}_{2}) + \mathbf{p}_{2}) \frac{1}{2} (m_{1} + m_{2}) \frac{2}{2} m_{1}^{2}m_{1}^{2}m_{2}} \frac{2}{m_{1}^{2}m_{1}^{2}m_{2}^{2}} \frac{1}{m_{1}^{2}m_{2}^{2}} + \frac{1}{2} \frac{\mathbf{p}_{1}(\mathbf{p}_{2},\mathbf{p}_{2})}{m_{1}^{2}m_{1}^{2}} \right) \\ & - \frac{1}{8} \frac{Gm_{1}m_{2}} \left(\frac{1}{2} \frac{gm_{1}^{2}}{m_{1}^{2}} + \frac{1}{2} \frac{gm_{1}^{2}}{m_{1}^{2}m_{2}} \frac{1}{m_{1}^{2}m_{1}^{2}m_{2}^{2}} \frac{1}{m_{1}^{2}m_{1}^{2}} \frac{1}{m_{1}^{2}m_{1}^{2}m_{1}^{2}}} \frac{1}{m_{1}^{2$$

Spinning EOB effective Hamiltonian $H_{\text{eff}} = H_{\text{orb}} + H_{\text{so}} \rightarrow H_{\text{EOB}} = Mc^2 \sqrt{1 + 2\nu \left(\frac{H_{\text{eff}}}{\mu c^2} - 1\right)}$

$$\hat{H}_{\text{orb}}^{\text{eff}} = \sqrt{A\left(1 + B_p p^2 + B_{np} (\boldsymbol{n} \cdot \boldsymbol{p})^2 - \frac{1}{1 + \frac{(\boldsymbol{n} \cdot \boldsymbol{\chi}_0)^2}{r^2}} \frac{(r^2 + 2r + (\boldsymbol{n} \cdot \boldsymbol{\chi}_0)^2)}{\mathcal{R}^4 + \Delta (\boldsymbol{n} \cdot \boldsymbol{\chi}_0)^2} ((\boldsymbol{n} \times \boldsymbol{p}) \cdot \boldsymbol{\chi}_0)^2 + Q_4\right)}.$$

 $H_{\rm so} = G_S \boldsymbol{L} \cdot \boldsymbol{S} + G_{S^*} \boldsymbol{L} \cdot \boldsymbol{S}^*,$

$$\mathbf{S} = \mathbf{S_1} + \mathbf{S_2}; \ \mathbf{S_*} = \frac{m_2}{m_1} \mathbf{S_1} + \frac{m_1}{m_2} \mathbf{S_2},$$

Gyrogravitomagnetic ratios (when neglecting spin² effects)

$$r^{3}G_{S}^{\rm PN} = 2 - \frac{5}{8}\nu u - \frac{27}{8}\nu p_{r}^{2} + \nu \left(-\frac{51}{4}u^{2} - \frac{21}{2}up_{r}^{2} + \frac{5}{8}p_{r}^{4}\right) + \nu^{2}\left(-\frac{1}{8}u^{2} + \frac{23}{8}up_{r}^{2} + \frac{35}{8}p_{r}^{4}\right)$$

$$r^{3}G_{S_{*}}^{\mathrm{PN}} = \frac{3}{2} - \frac{9}{8}u - \frac{15}{8}p_{r}^{2} + \nu\left(-\frac{3}{4}u - \frac{9}{4}p_{r}^{2}\right) - \frac{27}{16}u^{2} + \frac{69}{16}up_{r}^{2} + \frac{35}{16}p_{r}^{4} + \nu\left(-\frac{39}{4}u^{2} - \frac{9}{4}up_{r}^{2} + \frac{5}{2}p_{r}^{4}\right) + \nu^{2}\left(-\frac{3}{16}u^{2} + \frac{57}{16}up_{r}^{2} + \frac{45}{16}p_{2}^{4}\right)$$

Effective One Body (EOB) Method

Buonanno-Damour 1999, 2000 ; Damour-Jaranowski-Schäfer 2000, Damour 2001

200 000 Numerical-Relativity-completed EOB waveforms

EOB AND GSF

Comparable-mass case: $m_1 \sim m_2$

Gravitational Self-Force Theory : m₁ << m₂ based on BH perturbation theory: Regge-Wheeler-Zerilli-Teukolsky

Analytical high-PN results : Blanchet-Detweiler-LeTiec-Whiting '10, Damour '10, Blanchet et al '10, LeTiec et al '12, Bini-Damour '13-15, Kavanagh-Ottewill-Wardell '15 Bini-Damour-Geralico'16, Hopper-Kavanagh-Ottewill'16
(gauge-invariant) Numerical results : Detweiler '08, Barack-Sago '09, Blanchet-Detweiler-LeTiec-Whiting '10, Barack-Damour-Sago '10, Shah-Friedman-Keidl '12, Dolan et al '14, Nolan et al '15, Akcay-van de Meent '16
Analytical PN results from high-precision (hundreds to thousands of digits !) numerical results : Shah-Friedman-Whiting '14, Johnson-McDaniel-Shah-Whiting '15

GSF : ANALYTICAL HIGH-ORDER_PN RESULTS (22 LOOPS)

25

Bini-Damour 15

 $A(u;\nu) = 1 - 2u + \nu a(u) + O(\nu^2)$

Kavanagh et al 15

$a_{10}^{c} = \frac{18605478842060273}{7079830758000} \ln(2) - \frac{1619008}{405} \zeta(3) - \frac{21339873214728097}{1011404394000} \gamma + \frac{27101981341}{100663296} \pi^{6} - \frac{6236861670873}{125565440} \ln(3) + \frac{360126}{49} \ln(2) \ln(3) + \frac{180063}{49} \ln(3)^{2} - \frac{121494974752}{9823275} \ln(2)^{2} - \frac{24229836023352153}{549755813888} \pi^{4} + \frac{1115369140625}{124540416} \ln(5) + \frac{968890}{27799} $
$+\frac{75437014370623318623299}{18690753201120000}-\frac{60648244288}{9823275}\ln(2)\gamma+\frac{200706848}{280665}\gamma^{2}$ + $\frac{11980569677139}{2306867200}\pi^{2}+\frac{360126}{49}\gamma\ln(3),$
$a_{10}^{\ln} = -\frac{21275143333512097}{2022808788000} + \frac{200706848}{280665}\gamma - \frac{30324122144}{9823275}\ln(2) + \frac{180063}{49}\ln(3),$
$a_{10}^{\ln^2} = \frac{50176712}{280665},$
$a_{10.5}^{c} = -\frac{185665618769828101}{24473489040000}\pi + \frac{377443508}{77175}\ln(2)\pi + \frac{2414166668}{1157625}\pi\gamma - \frac{5846788}{11025}\pi^{3} - \frac{2414166668}{11025}\pi\gamma - \frac{1207083334}{11025}\pi^{3} - \frac{1207083334}{11025}\pi\gamma - \frac{120708}{11025}\pi\gamma - \frac{120708}{11$
$a_{10.5}^{\rm ln} = \frac{1207000001}{1157625} \pi.$

Numerical GSF computation of the O(nu) A(u;nu)-potential: with singularity at u=1/3 (Akcay et al 2012)

$$a(u) \simeq 0.25(1-3u)^{-1/2}$$

GSF can also bring scattering information

(Damour 2010, Barack et al, in prepar)

 $\frac{2069543450583769619340376724}{325477442086506084375}\zeta(3) + \frac{65195026298245007936}{22370298575625}\gamma\zeta(3) - \frac{5049442304}{25725}\gamma^2\zeta(3) + \frac{1262360576}{15435}\pi^2\zeta(3)$ $+ \frac{171722752}{441} \zeta(3)^2 + \frac{1613866959570176}{496621125} \zeta(5) - \frac{343445504}{441} \gamma \zeta(5) - \frac{146997248}{105} \zeta(7) + \frac{56314978304}{385875} \zeta(3) \log^2(2)$ $\frac{106445664}{343}\zeta(3)\log^2(3) + \frac{151670998244849797696}{22370298575625}\zeta(3)\log(2) - \frac{190336581632}{1157625}\gamma\zeta(3)\log(2)$ $+ \frac{28863591064624341}{4909804900} \zeta(3) \log(3) - \frac{212891328}{343} \gamma \zeta(3) \log(3) - \frac{212891328}{343} \zeta(3) \log(2) \log(3) - \frac{77186767578125}{19876428} \zeta(3) \log(3) - \frac{212891328}{19876428} \zeta(3) \log(3) -$ $-\frac{2039263232}{3675}\zeta(5)\log(2) - \frac{49128768}{49}\zeta(5)\log(3) + \frac{298267427515018397019736592175289419501391539444290849}{6587612222544653226142468405031917319531250}$ $\frac{6807661768453637768313286948060329087501419}{704310948124803722562607729544062500}\gamma + \frac{1598346944412603247831006289829388}{526171715038677033591890625}$ $\frac{461219496448}{72930375}\gamma^4 - \frac{28338275082077591587855063450276303790065762907243197}{999703155845143418115744045792755712000000}\pi^2 + \frac{25191178655399275691104}{67178006622601875}\pi^2$ $\frac{101213430440}{72930375}\gamma^{2} - \frac{10502210002011031001000040021000010020012000102001240101}{999703155845143418115744045792755712000000}\pi^{2} + \frac{101311100000}{671780066}$ $\frac{230609748224}{14586075}\gamma^{2}\pi^{2} + \frac{105480323357757226894713787760391180776248036241}{304245354831316028025099055320268800000}\pi^{4} + \frac{1262360576}{385875}\gamma\pi^{4}$ 67178006622601875 $\frac{6208472839612966972691457131143}{266930151354100246118400}\pi^{6} + \frac{3573178781920929118281329}{151996487423754240}\pi^{8} - \frac{10136323685888}{72930375}\log^{4}(2) + \frac{38438712}{2401}\log^{4}(3)$ $\frac{177896086126482679647872}{54963823600310625}\log^3(2) - \frac{89686013106176}{364651875}\gamma\log^3(2) + \frac{153754848}{2401}\log^3(2)\log(3)$ $\frac{131463845322790269123}{245735735245000}\log^{3}(3) + \frac{153754848}{2401}\gamma\log^{3}(3) + \frac{153754848}{2401}\log(2)\log^{3}(3) + \frac{11933074267578125}{51161925672}\log^{3}(5)$ $+ \frac{3878258674166628974595420635200204}{189421817413923732093080625} \log^2(2) - \frac{3440856379914601692151168}{1007670099339028125} \gamma \log^2(2) - \frac{16582891400192}{121550625} \gamma^2 \log^2(2)$ $+ \frac{1189421817413923732093080625}{1252332093080625} + \frac{108}{12} (2) - \frac{1007670099339028125}{245735735245000} \log^2(2) \log(3) + \frac{461264544}{2401} \gamma \log^2(2) \log(3) + \frac{4145722850048}{2401} \gamma \log^2(2) \log(3) + \frac{45454535766189065888302299261759}{245735735245000} \log^2(2) \log^2(3) + \frac{230632272}{2401} \gamma^2 \log^2(3) - \frac{394391535968370807369}{245735735245000} \gamma \log^2(3) + \frac{230632272}{2401} \gamma^2 \log^2(3) - \frac{96096780}{2401} \pi^2 \log^2(3) - \frac{437493411770075173449}{245735735245000} \log(2) \log^2(3) + \frac{461264544}{2401} \gamma \log(2) \log^2(3) + \frac{230632272}{2401} \log^2(3) + \frac{230632272}{2401} \log^2(2) \log^2(3) + \frac{11933074267578125}{17053975224} \log^2(2) \log(5) - \frac{2505842696993145943705498046875}{402136320895332222431232} \log^2(5) + \frac{11933074267578125}{17053975224} \log^2(2) \log^2(5) + \frac{47929508316470415142010251}{56464635170211840000} \log^2(7) \log^2(7) + \frac{181636067216895220421537747685253699734494659}{12\pi(2)} \log^2(2) + \frac{74203662155219108543799531653010136}{20136} \gamma \log(2)$ $\frac{181636067216895220421537747685253699734494659}{6338798533123233503063469565896562500}\log(2) + \frac{74203662155219108543799531653010136}{4735545435348093302327015625}\gamma\log(2)$ $\frac{1482169326522492515499392}{1007670099339028125}\gamma^2\log(2) - \frac{4905667647488}{364651875}\gamma^3\log(2) + \frac{371228115490667668451168}{604602059603416875}\pi^2\log(2)$ $\frac{1226416911872}{72930375}\gamma\pi^2\log(2) + \frac{23792072704}{17364375}\pi^4\log(2) - \frac{4141158375397180302387095124935855747727}{108266631596274488880198656000000}\log(3)$ $+ \frac{9459358001131575454332055276239}{691550339662092951040000} \gamma \log(3) - \frac{394391535968370807369}{245735735245000} \gamma^2 \log(3) + \frac{153754848}{2401} \gamma^3 \log(3)$ $+ \frac{131463845322790269123}{196588588196000} \pi^2 \log(3) - \frac{192193560}{2401} \gamma \pi^2 \log(3) + \frac{8870472}{1715} \pi^4 \log(3)$ $+ \frac{214411501060211389845962927148381}{13139456453579766069760000} \log(2) \log(3) - \frac{437493411770075173449}{122867867622500} \gamma \log(2) \log(3)$ $\frac{461264544}{2401}\gamma^2\log(2)\log(3) - \frac{192193560}{2401}\pi^2\log(2)\log(3) + \frac{978612948501709853277095576118865234375}{17942749191956127021132384903168}\log(5)$ $\frac{2505842696993145943705498046875}{201068160447666111215616}\gamma\log(5) + \frac{11933074267578125}{17053975224}\gamma^2\log(5) - \frac{59665371337890625}{204647702688}\pi^2\log(5)$ $\frac{2505842696993145943705498046875}{201068160447666111215616}\log(2)\log(5) + \frac{11933074267578125}{8526987612}\gamma\log(2)\log(5)$ $\frac{5858006173792308915665113013914648081}{323919193207512802977792000000}\log(7) + \frac{47929508316470415142010251}{28232317585105920000}\gamma\log(7)$ $\frac{47929508316470415142010251}{28232317585105920000}\log(2)\log(7) + \frac{7400249944258160101211}{65676344832000000}\log(11),$

Classical Gravitational Scattering and the EOB description of the GR 2-body dynamics

Original EOB dictionary based on bound states.

$$f(E_{\text{real}}(I_a)) = E_{\text{eff}}(I_a)$$

New (equivalent) dictionary for scattering states:

applicable to the PM approximation (no restriction on v/c).

[Damour2016] $\chi_{eff}(\mathcal{E}_{eff}, J) = \chi_{real}(\mathcal{E}_{real}, J),$ $p_{1}' \qquad \qquad p_{2}'$ $\frac{1}{2}\chi_{1PM}^{real} = \frac{G}{J}\frac{2(p_{1}.p_{2})^{2} - p_{1}^{2}p_{2}^{2}}{\sqrt{(p_{1}.p_{2})^{2} - p_{1}^{2}p_{2}^{2}}}.$

 $\frac{1}{2}\chi_{\text{class}}(E,J) = \frac{1}{j}\chi_1(\hat{E}_{\text{eff}},\nu) + \frac{1}{j^2}\chi_2(\hat{E}_{\text{eff}},\nu) + O(G^3)$

New results already at the 1PM order (linear in G)

Derivation of EOB energy map to all orders in v/c:

$$\mathcal{E}_{\rm eff} = rac{(\mathcal{E}_{\rm real})^2 - m_1^2 - m_2^2}{2(m_1 + m_2)}$$

to order G¹, the relativistic dynamics of a two-body system (of masses m₁, m₂) is equivalent to the relativistic dynamics of an effective test particle of mass $\mu = m_1m_2/(m_1 + m_2)$ moving in a Schwarzschild metric of mass M = $m_1 + m_2$, i.e. the rather complicated 1PM Hamiltonian of Ledvinka-Schaefer-Bicak2010: with

$$\begin{split} H_{\rm lin} &= \sum_{a} \overline{m}_{a} + \frac{1}{4}G\sum_{a,b\neq a} \frac{1}{r_{ab}} \left(7 \,\mathbf{p}_{a} \cdot \mathbf{p}_{b} + (\mathbf{p}_{a} \cdot \mathbf{n}_{ab})(\mathbf{p}_{b} \cdot \mathbf{n}_{ab})\right) - \frac{1}{2}G\sum_{a,b\neq a} \frac{\overline{m}_{a} \overline{m}_{b}}{r_{ab}} \\ &\times \left(1 + \frac{p_{a}^{2}}{\overline{m}_{a}^{2}} + \frac{p_{b}^{2}}{\overline{m}_{b}^{2}}\right) - \frac{1}{4}G\sum_{a,b\neq a} \frac{1}{r_{ab}} \frac{(\overline{m}_{a} \overline{m}_{b})^{-1}}{(y_{ba} + 1)^{2} y_{ba}} \left[2\left(2(\mathbf{p}_{a} \cdot \mathbf{p}_{b})^{2}(\mathbf{p}_{b} \cdot \mathbf{n}_{ba})^{2}\right) - (6)\right) \\ &- 2(\mathbf{p}_{a} \cdot \mathbf{n}_{ba})(\mathbf{p}_{b} \cdot \mathbf{n}_{ba})(\mathbf{p}_{a} \cdot \mathbf{p}_{b})\mathbf{p}_{b}^{2} + (\mathbf{p}_{a} \cdot \mathbf{n}_{ba})^{2}\mathbf{p}_{b}^{4} - (\mathbf{p}_{a} \cdot \mathbf{p}_{b})^{2}\mathbf{p}_{b}^{2}\right) \frac{1}{\overline{m}_{b}^{2}} + 2\left[-\mathbf{p}_{a}^{2}(\mathbf{p}_{b} \cdot \mathbf{n}_{ba})^{2} \\ &+ (\mathbf{p}_{a} \cdot \mathbf{n}_{ba})^{2}(\mathbf{p}_{b} \cdot \mathbf{n}_{ba})(\mathbf{p}_{a} \cdot \mathbf{n}_{ba})(\mathbf{p}_{b} \cdot \mathbf{n}_{ba})(\mathbf{p}_{a} \cdot \mathbf{p}_{b}) + (\mathbf{p}_{a} \cdot \mathbf{p}_{b})^{2} - (\mathbf{p}_{a} \cdot \mathbf{n}_{ba})^{2}\mathbf{p}_{b}^{2}\right] \\ &+ \left[-3\mathbf{p}_{a}^{2}(\mathbf{p}_{b} \cdot \mathbf{n}_{ba})^{2} + (\mathbf{p}_{a} \cdot \mathbf{n}_{ba})^{2}(\mathbf{p}_{b} \cdot \mathbf{n}_{ba})(\mathbf{p}_{a} \cdot \mathbf{n}_{ba})(\mathbf{p}_{b} \cdot \mathbf{n}_{ba})(\mathbf{p}_{a} \cdot \mathbf{p}_{b}) \\ &+ p_{a}^{2}\mathbf{p}_{b}^{2} - 3(\mathbf{p}_{a} \cdot \mathbf{n}_{ba})^{2}\mathbf{p}_{b}^{2}\right]y_{ba}\right], \qquad y_{ba} = \frac{1}{\overline{m}_{b}}\sqrt{m_{b}^{2} + (\mathbf{n}_{ba} \cdot \mathbf{p}_{b})^{2}}. \qquad \overline{m}_{a} = \left(m_{a}^{2} + \mathbf{p}_{a}^{2}\right)^{\frac{1}{2}} \end{split}$$

is fully described by the EOB energy map applied to

$$ds_{\rm lin}^2 = -(1 - 2\frac{GM}{r})dt^2 + (1 + 2\frac{GM}{r})dr^2 + r^2 d\Omega^2$$

Predicted Regge-like Behavior of High-Energy GM**Unstable Circular Bound States** $u \equiv$ \overline{R}

asymptotic constant Regge slope

$$\frac{ds}{dJ} = \frac{2}{G} \frac{d\hat{\mathcal{E}}_{\text{eff}}}{dj} \stackrel{\text{HE}}{\approx} \frac{0.719964}{G} \qquad E_{\text{real}}^2 \stackrel{\text{HE}}{=} C \frac{J}{G},$$

Self-Force Expansion, Light-Ring Behavior

Small mass-ratio expansion: \nu ->0

$$\hat{H}_{eff}^{2}(p_{r}, r, p_{\varphi}; \nu) = \hat{H}_{Schw}^{2} + 1 - \frac{1}{\sqrt{1 + 2\nu(\hat{H}_{Schw} - 1)}} = \nu(\hat{H}_{Schw} - 1) - \frac{3}{2}\nu^{2}(\hat{H}_{Schw} - 1)^{2} + \frac{5}{2}\nu^{3}(\hat{H}_{Schw} - 1) - \frac{3}{2}\nu^{2}(\hat{H}_{Schw} - 1)^{2} + \frac{5}{2}\nu^{3}(\hat{H}_{Schw} - 1)^{3} + \cdots + \frac{3}{2}\nu(1 - 2u)u^{2}(5\hat{H}_{Schw}^{2} - 1)(\hat{H}_{Schw} - 1) + \frac{5}{2}\nu^{2}(\hat{H}_{Schw} - 1)^{2} + \cdots \right] \\
\times \left[1 - \frac{3}{2}\nu(\hat{H}_{Schw} - 1) + \frac{5}{2}\nu^{2}(\hat{H}_{Schw} - 1)^{2} + \cdots \right] . \tag{8.7}$$

Singular Light-Ring Behavior of Self-Force expansion in DJS gauge (Akcay-Barack-Damour-Sago'12)

$$\bar{A}^{\rm SF}(\bar{u};\nu) = 1 - 2\bar{u} + \nu a_{1\rm SF}(\bar{u}) + \nu^2 a_{2\rm SF}(\bar{u}) + O(\nu^3). \quad a_{1\rm SF}(\bar{u}) \sim \frac{1}{\bar{u} \to \frac{1}{3}} \frac{1}{4} \zeta (1 - 3\bar{u})^{-1/2}, \quad \text{with} \quad \zeta \approx 1.$$

1PM and 2PM-accurate spin-orbit couplings

Using the results of Bel-Damour-Deruelle-Ibanez-Martin'81 for the 2PM metric, one gets the 2PM-accurate value of the integrated spin rotation (spin holonomy)

$$\theta_{1} = -\frac{2}{hj\sqrt{\gamma^{2}-1}} \left[\gamma X_{2} + (2\gamma^{2}-1)(X_{1}-h)\right] \\ +\frac{\pi}{4h^{2}j^{2}} \left[-3(5\gamma^{2}-1)(X_{1}-h) - 6\gamma X_{2} \\ +\gamma(5\gamma^{2}-3)X_{1}X_{2}\right]. \qquad (\xi$$

L

Т

EOB transcription of the 2PM-accurate spin-rotation

energ instead

$$\begin{array}{ll} \text{energy spin-gauge} \\ \text{instead of DJS gauge} \\ \end{array} \begin{array}{l} g_{S} \ = \ g_{S}^{1\mathrm{PM}}(H_{\mathrm{eff}}) + g_{S}^{2\mathrm{PM}}(H_{\mathrm{eff}}) \, u + O(u^{2}) \, , \\ g_{S*} \ = \ g_{S*}^{1\mathrm{PM}}(H_{\mathrm{eff}}) + g_{S*}^{2\mathrm{PM}}(H_{\mathrm{eff}}) \, u + O(u^{2}) \, , \\ \\ g_{S*} \ = \ g_{S*}^{1\mathrm{PM}}(\gamma, \nu) \ = \ \frac{(2\gamma + 1)(2\gamma + h) - 1}{h(h + 1)\gamma(\gamma + 1)} \\ \\ \theta_{1}^{\mathrm{EOB}} \ = \ G \int \frac{\mathbf{L}}{R^{3}} \left(g_{S} + \frac{m_{2}}{m_{1}} g_{S*} \right) \frac{B}{A} E_{\mathrm{eff}} \frac{dR}{P_{R}} \, , \\ \\ g_{S*}^{\mathrm{IPM}}(\gamma, \nu) \ = \ \frac{1}{h(h + 1)} \left[4 + \frac{h - 1}{\gamma + 1} + \frac{h - 1}{\gamma} \right] \\ \\ \gamma \ = \ \hat{H}_{\mathrm{eff}} \quad h \ = \ \sqrt{1 + 2\nu(\gamma - 1)} \\ \end{array}$$

$$\begin{split} g_{S}^{2\mathrm{PM}}(\gamma,\nu) &= -\frac{\nu}{\gamma(\gamma+1)^{2}h^{2}(h+1)^{2}}[2(2\gamma+1)(5\gamma^{2}-3)h+(\gamma+1)(35\gamma^{3}-15\gamma^{2}-15\gamma+3)] \\ &= \frac{\nu}{h^{2}(h+1)^{2}}\left[-5(7\gamma+4h-10)+\frac{8(3h-4)}{\gamma+1}-\frac{4h}{(\gamma+1)^{2}}+\frac{3(2h-1)}{\gamma}\right] \\ g_{S*}^{2\mathrm{PM}}(\gamma,\nu) &= -\frac{1}{2\gamma(\gamma+1)^{2}h^{2}(h+1)}\left[(5\gamma^{2}+6\gamma+3)(h+1)+4\nu(1+2\gamma)(5\gamma^{2}-3)\right] \\ &= \frac{1}{h^{2}(h+1)}\left[-20\nu+\frac{24\nu-h-1}{\gamma+1}+\frac{h+1-4\nu}{(\gamma+1)^{2}}-\frac{3}{2}\frac{h+1-4\nu}{\gamma}\right] \\ &= \frac{1}{h^{2}(h+1)}\left[-\frac{20\gamma\nu}{\gamma+1}+(h+1-4\nu)\left(\frac{1}{(\gamma+1)^{2}}-\frac{1}{\gamma+1}-\frac{3}{2}\frac{1}{\gamma}\right)\right]. \end{split}$$

Quantum Scattering Amplitudes and 2-body Dynamics

New technique: use EOB as a scattering-> Hamiltonian translation device

Progress in gravity amplitudes (Bern, Carrasco et al., Cachazo et al., Bjerrum-Bohr et al., Cachazo-Guevara,...) can be used (Damour '18) to improve the classical 42-body dynamics: need a quantum/classical dictionary.

High-energy limit of 2-body scattering and 2-body dynamics

Using the (eikonal) ultra-high-energy results of Amati-Ciafaloni-Veneziano: get HE information up to G⁴

"ig. 3. The "H" diagram that provides the leading correction to the eikonal.

$$\alpha = \frac{GME_{\text{eff}}}{J} = \frac{G}{2} \frac{(E_{\text{real}})^2 - m_1^2 - m_2^2}{J} \approx_{\text{HE}} \frac{GE_{\text{real}}}{b}$$

The masses disappear and the HE scattering is equivalent to a null geodesic in the « effective HE metric »

$$ds^{2} = -A_{\rm HE}(u)dT^{2} + \frac{dR^{2}}{1-2u} + R^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2}),$$

$$A_{\rm HE}(u) = (1 - 2u) \left(1 + \frac{15}{2}u^2 - 3u^3 + \frac{1749}{16}u^4 + O(u^5) \right)$$

2PM 3PM 4PM

Translating quantum scattering amplitudes into classical dynamical information

How to translate a scattering amplitude into a classical Hamiltonian ?

$$\mathcal{M}(s,t) = \mathcal{M}^{(\frac{G}{\hbar})}(s,t) + \mathcal{M}^{(\frac{G^2}{\hbar^2})}(s,t) + \cdots$$

$$\mathcal{M}^{(\underline{G})}(s,t) = 16\pi \frac{G}{\hbar} \frac{2(p_1 \cdot p_2)^2 - p_1^2 p_2^2}{-t}$$

Problem: The domain of validity of the Born expansion is GE_1 E_2/(hbar v) << 1, while the domain of validity of the classical scattering is GE_1 E_2/(hbar v) >> 1!

It is an accident that the Born approximation of a 1/r potential yields the exact cross section.

A way out: quantize the classical EOB Hamiltonian dynamics.

2PM, O(G^2) EOB classical mass-shell condition $p_{\infty}^2 = \hat{\mathcal{E}}_{eff}^2 - 1$, $\mathbf{p}^2 = p_{\infty}^2 + \bar{W}(\bar{u}) = p_{\infty}^2 + w_1 \bar{u} + w_2 \bar{u}^2 + O(\bar{u}^3)$, $w_1 = 2(2\hat{\mathcal{E}}_{eff}^2 - 1)$, Quantized version: $w_2 = \frac{3}{2} \frac{5\hat{\mathcal{E}}_{eff}^2 - 1}{h(\hat{\mathcal{E}}_{eff})}$. $-\hat{\hbar}^2 \Delta_{\mathbf{x}} \psi(\mathbf{x}) = \left[p_{\infty}^2 + \frac{w_1}{\bar{r}} + \frac{w_2}{\bar{r}^2} + O\left(\frac{1}{\bar{r}^3}\right) \right] \psi(\mathbf{x})$.

Scattering amplitude for this potential scattering at the second Born approximation

$$f_{\mathbf{k}_{a}}^{+\mathrm{B1}}(\mathbf{k}_{b}) = \frac{1}{\hat{\hbar}^{2}} \left[e^{\delta_{C}} \frac{w_{1}}{q^{2}} + \frac{\pi}{2} \frac{w_{2}}{q} \right],$$
$$\delta_{C} = i \frac{w_{1}}{2k\hat{\hbar}^{2}} \ln\left(\sin^{2}\frac{\theta}{2}\right) + 2i \arg\Gamma\left(1 - i \frac{w_{1}}{2k\hat{\hbar}^{2}}\right).$$

Classical/quantum dictionary: prediction for one-loop result

$$\mathcal{M}^{G^2}/\mathcal{M}^{G^1}$$
 with
 $\mathcal{M}^{(\underline{G})}(s,t) = 16\pi \frac{G}{\hbar} \frac{2(p_1 \cdot p_2)^2 - p_1^2 p_2^2}{-t}.$

$$\frac{f_{(1/q)}^{+}}{f_{(1/q^2)}^{+}} = \frac{3\pi}{8} \frac{5\hat{\mathcal{E}}_{\text{eff}}^2 - 1}{2\hat{\mathcal{E}}_{\text{eff}}^2 - 1} \frac{G(m_1 + m_2)\sqrt{-t}}{\hbar} + O(G^2).$$

OK with one-loop result of Guevara 1706.02314; and Bjerrum-Bohr et al. 2018

2-loop amplitude gives the 3PM O(G^3) EOB Hamiltonian: q_3 u³

From 2-loop amplitude to 3PM O(G^3) EOB Hamiltonian i.e. q_3 u^3

Fig. 3. The "H" diagram that provides the leading correction to the eikonal.

Summary

EOB theory (Hamiltonian + Waveform) is directly used by LIGO-Virgo to define the many needed accurate templates

The EOB formulation of 2-body dynamics is a useful tool for transcribing classical and quantum scattering information into bound-state information.

The classical one-loop (G²) scattering has been transcribed in EOB theory thereby giving new vistas on high-energy gravitational interactions.

The Amati-Ciafaloni-Veneziano 2-loop HE result has been transcribed in EOB theory.

The HE gravitational EOB interaction predicts string-like (Regge-like) unstable « whirl » bound states: s ~ C J/G

A quantum/classical dictionary has been established.

Using it, the two-loop quantum scattering amplitude of gravitationally interacting scalar particles is easily translated into 3PM EOB Hamiltonian

EOB offers also a framework to transcribe spin effects from classical to quantum

