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Setup

Prediction from Symmetries

Why are we interested in five loops?

• Supersymmetry arguments predict critical dimension for N = 8
SUGRA at five loops to be Dc = 24

5 .
(Bossard, Howe, Stelle; Elvang, Freedman, Kiermaier; Green, Russo, Vanhove; Green and

Björnsson; Bossard, Hillmann and Nicolai; Ramond and Kallosh; Broedel and Dixon;

Elvang and Kiermaier; Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger ;

Bossard, Howe, Stelle, Vanhove)

• Predicted divergence in Dc = 4 comes at seven loops from same
operator.

• Explicit calculations show “enhanced cancellations” for lower SUSY
and lower loops. (Bern, Davies, Dennen; Bern, Davies, Dennen, Huang)
Enhanced Cancellations: Cancellations of divergences when combining
diagrams into amplitude, that are not consequences of standard
symmetry arguments.
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Setup

Generalized Double Copy

“Traditional” BCJ double-copy:

1 Impose color jacobi relations on corresponding numerators

2 Match unitarity cuts

3 Numerators can be “squared” to get gravity

Generalized Double Copy:

1 Impose color jacobi relations on corresponding numerators

2 Build some local,diagrammatic sYM representation. Better power
counting still helps on the gravity side.

3 “Square numerators”. Integrand is not a gravity integrand, but close.

4 Correct integrand with contact terms.

See Radu Roiban’s talk from earlier, and John Joseph Carrasco’s talks
from QCD Meets Gravity 2017 and Amplitudes 2018.
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Setup

Large ` Expansion

Large loop momentum implemented by small external momenta expansion:

pi → εpi

Each diagram can be expanded to target order in ε to extract log divergent
terms in a given dimension.

D =
22

5
: Ik → ε6I(6)k D =

24

5
: Ik → ε8I(8)k

Ik = N → (s2 + t2 + u2)2ε8
(
N(8) +

1

`2
N(6) + . . .

)

= dots↔ doubled propagators =
1

(`2)2
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UV Diagram Symmetries and IBP Relations

UV Diagram Symmetries and IBP
Relations
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UV Diagram Symmetries and IBP Relations Symmetries

Two Classes of Symmetries

1 Isomorphisms: changing location of
doubled propagators

2 Automorphisms: fixing doubled
propagators in place

8 / 25



UV Diagram Symmetries and IBP Relations Symmetries

Isomorphisms

• Graph/propagator relabelings that change the location of dots

• Orbit of automorphism group of undotted graph w.r.t. dots.
• Induces non-trivial mapping of numerators

• Integrals are invariant under exchanging adjacent bubbles and
propagators

Pick canonical configuration under both of these actions
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UV Diagram Symmetries and IBP Relations Symmetries

Automorphisms

• Relabelings that leave dots fixed, but relabel other propagators

• Stabilizer group w.r.t. dots

• Almost always leads to equalities between irreducible numerators, or
relations between contacts

• Solve these as equations in conjunction with integration by parts
relations.
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UV Diagram Symmetries and IBP Relations IBPs

sl(L) Relations

Use two loop example so that it actually fits on slide:

• Generic vacuum integral

VA,B,C =

∫
dD`1
(2π)2

dD`2
(2π)2

1

[(`1)2 −m2]A[(`2)2 −m2]B [(`1 − `2)2 −m2]C

• Only interested in logarithmically divergent integrals, A + B + C = D.

• Want to generate relations between UV poles of the integrals 1.
Start by looking at

0 =

∫
dD`1
(2π)2

dD`2
(2π)2

∂

∂`µi

Ωij`
µ
j∏

j Pj

where Ω ∈ gl(L) ∼ infinitesimal relabeling of loop variables.

1Bern, Enciso, Parra-Martinez, and Zeng 2017
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UV Diagram Symmetries and IBP Relations IBPs

sl(L) Relations

• Trace part: Ω =

(
1 0
0 1

)
0 = −4εVA,B,C − 10m2(VA+1,B,C + VA,B+1,C + VA,B,C+1)

Probes scaling weight, mixes IR and UV, not what we are interested
in.

• Traceless part, sl(L) e.g. Ω =

(
1 0
0 −1

)
0 =(−2A + 2B)VA,B,C − 2CVA−1,B,C+1 + 2CVA,B−1,C+1

+ m2(−2AVA+1,B,C + 2BVA,B+1,C )

Setting m→ 0 decouples UV and IR. Generates relations between UV
log divergent integrals, exactly what we want.
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Results

Results
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Results

Problem Statistics

• Gravity Integrand Diagrams: (Recall Roiban’s talk)

Contact Level Max N1 N2 N3 N4 N5 N6

Num. Diagrams 752 0 9007 17479 22931 20657 13071

Most of the contacts are actually zero. Many expand to zero.

• Integration System:

3 million topology relations

4.5 million integral equations
850,000 integrals
∼ QCD β-function

8 relevant master integrals
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Results

SUGRA Master Integrals
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Results

The Result

• Constructing a gravity integrand – Years

• Solving the IBP system – Seven days on the cluster

• Get a two-term result

M(5)
4

∣∣∣D=24/5

leadingUV
∝ 1

48
+

1

16
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A Useful Pattern

N = 4 super-Yang–Mills

= dots↔ doubled propagators =
1

(`2)2

A(1)
4

∣∣∣
leading

= g4KYM

(
Nc(f̃ a1a2b f̃ ba3a4 + f̃ a2a3b f̃ ba4a1)− 3Ba1a2a3a4

)
,

A(2)
4

∣∣∣
leading

= − g6KYM

[
F a1a2a3a4

(
N2
c + 48

(
1

4
+

1

4

))

+ 48Nc G
a1a2a3a4

(
1

4
+

1

4

)]
,

A(3)
4

∣∣∣
leading

= 2 g8KYM NcF
a1a2a3a4

(
N2
c + 72

(
1

6
+

1

2

))
,

A(4)
4

∣∣∣
leading

= −6 g10KYM N2
cF

a1a2a3a4

(
N2
c + 48

(
1

4
+

1

2
+

1

4

))
,

A(5)
4

∣∣∣
leading

=
144

5
g12KYMN3

c F
a1a2a3a4

(
N2
c + 48

(
1

4
+

1

2
+

1

4

))
,

A
(6)
4

∣∣∣
leading

= −120g14KYM F a1a2a3a4N6
c

(
1

2
+

1

4
(`1 + `2)2 − 1

20

)
+O(N4

c ) ,

Green, Schwarz, Brink; Bern, Rozowsky, Yan; Bern, Dixon, Dunbar, Perelstein, Rozowsky;

Carrasco, Dixon, Johansson, Roiban; Bern, Carrasco, Dixon, Douglas, von Hippel, Johansson
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A Useful Pattern

N = 8 SUGRA

M(1)
4

∣∣∣
leading

= −3KG

(κ
2

)4
,

M(2)
4

∣∣∣
leading

= −8KG

(κ
2

)6
(s2 + t2 + u2)

(
1

4
+

1

4

)
,

M(3)
4

∣∣∣
leading

= −60KG

(κ
2

)8
stu

(
1

6
+

1

2

)
,

M(4)
4

∣∣∣
leading

= −23

2
KG

(κ
2

)10
(s2 + t2 + u2)2

(
1

4
+

1

2
+

1

4

)
,

M(5)
4

∣∣∣
leading

= −16× 629

25
KG

(κ
2

)12
(s2 + t2 + u2)2

(
1

48
+

1

16

)
,

Green, Schwarz, Brink; Bern, Dixon, Dunbar, Perelstein , Rozowsky; Carrasco, Dixon,

Johansson, Roiban; Bern, Carrasco, Chen, AE, Johansson, Roiban, Parra-Martinez, Zeng
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A Useful Pattern

Relations Between Loops in sYM and SUGRA

We noticed some interesting patterns between loops for the UV
expressions.
In sYM, we see
• Planar diagrams are related between loops:

1

4
→ 1

4

• As are the subleading color pieces:

=
1

4
+

1

2
+

1

4

→ 1

4
+

1

2
+

1

4

Up to four loops, SUGRA diagrams are same as subleading color in sYM.
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A Useful Pattern

Relations Between Loops in sYM and SUGRA

Five Loop SUGRA first difference between sYM and SUGRA

→ 12

→ 8 + 4

→ 1

4
+

1

2
+

1

4
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A Useful Pattern

Relations Between Loops in sYM and SUGRA

• Works even when numerators present e.g. six → five loops, but need
IBPs:

1

2
+

1

4
(`1 + `2)2 − 1

20

→ 1

2
+

1

4
(`1 + `2)2

∝

• Can be continued all the way to one loop → boxes or better
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A Useful Pattern

No One Loop Triangles

No one loop triangles occurs in both sYM and SUGRA for all data we
have:

• SUGRA master integrals at five loops:

M(5)
4

∣∣∣
leading

∝ 1

48
+

1

16

Relative coefficients are just combinatoric factors.
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A Useful Pattern

Closing Comments

• Found some useful consistency relations between leading behavior at
different loop levels

• Can use to relations to help target unitarity cuts, skipping lots of work
for six and seven loops

• Would be interesting to see if similar relations present in different
theories, e.g. N = 4, 5 SUGRA, N = 1, 2 sYM, QCD

• Recent work gives evidence that enhanced cancellations happen
specifically in D = 4 (Herrmann and Trnka 2018). It would be very
interesting to check for these cancellations for L = 7, D = 4 where
symmetry arguments predict a divergence
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A Useful Pattern

Thank You

25 / 25


	Setup
	UV Diagram Symmetries and IBP Relations
	Symmetries
	IBPs

	Results
	A Useful Pattern

