Minimal (anomalous) \cup (1) theories & collider phenomenology

Johan Löfgren Nov. 7, 2017

UPPSALA UNIVERSITET Ingredients:

- 1. The SM
- 2. One additional U (1) gauge group; a Z' with $M_{Z'} \sim \mathcal{O}\left(\text{TeV}\right)$
- 3. A complex scalar φ ; $m_{\varphi} = 500 \text{ GeV}$
- 4. Three right handed neutrinos ν_R ; $m_{\nu_R} = 500 \text{ GeV}$

Our paper: ArXiv:1605.04855 (Andreas Ekstedt, Rikard Enberg, Gunnar Ingelman, Tanumoy Mandal, Johan Löfgren)

Field
$$q_L$$
 u_R d_R l_L e_R ν_R H φ Charge z_q z_u z_d z_l z_e z_k z_H +1

• $SU(2)_L \times U(1)_Y \times U(1)_z \xrightarrow{\langle \varphi \rangle} SU(2)_L \times U(1)_Y \xrightarrow{\langle H \rangle} U(1)_Q$

Field
$$q_L$$
 u_R d_R l_L e_R ν_R H φ Charge z_q z_u z_d z_l z_e z_k z_H +1

• $SU(2)_L \times U(1)_Y \times U(1)_z \xrightarrow{\langle \varphi \rangle} SU(2)_L \times U(1)_Y \xrightarrow{\langle H \rangle} U(1)_Q$ \implies mixing between Z and Z' if $z_H \neq 0$.

Field
$$q_L$$
 u_R d_R l_L e_R ν_R H φ Charge z_q z_u z_d z_l z_e z_k z_H +1

- $SU(2)_L \times U(1)_Y \times U(1)_z \xrightarrow{\langle \varphi \rangle} SU(2)_L \times U(1)_Y \xrightarrow{\langle H \rangle} U(1)_Q$ \implies mixing between Z and Z' if $z_H \neq 0$.
- SM Yukawa couplings $\implies z_H = z_l z_e$.

Field
$$q_L$$
 u_R d_R l_L e_R ν_R H φ Charge z_q z_u z_d z_l z_e z_k z_H +1

• $SU(2)_L \times U(1)_Y \times U(1)_z \xrightarrow{\langle \varphi \rangle} SU(2)_L \times U(1)_Y \xrightarrow{\langle H \rangle} U(1)_Q$

 \implies mixing between Z and Z' if $z_H \neq 0$.

- SM Yukawa couplings $\implies z_H = z_l z_e$.
- Neutrino seesaw only if $z_k = \pm \frac{1}{2}$.

Anomaly	Factor
$[SU(2)_{L}]^{2} [U(1)_{z}]$ $[SU(3)_{c}]^{2} [U(1)_{z}]$ $[U(1)_{Y}]^{2} [U(1)_{z}]$ $[U(1)_{Y}] [U(1)_{z}]^{2}$	$ \begin{array}{l} \operatorname{Tr}\left[\left\{T^{i},T^{j}\right\}z\right]\\ \operatorname{Tr}\left[\left\{\mathcal{T}^{a},\mathcal{T}^{b}\right\}z\right]\\ \operatorname{Tr}\left[Y^{2}z\right]\\ \operatorname{Tr}\left[Yz^{2}\right] \end{array} $
$[U(1)_z]^3$ $[U(1)_z] [Grav.]^2$	Tr [<i>z</i> ³] Tr [<i>z</i>]

MZ' gz ZH Zq Zu Zd ZI Ze Zk

$$Q_{z} = \left(4z_{q} - z_{u}\right)\left(B - L\right) + z_{H}Y$$

$$Q_{z} = \left(4z_{q} - z_{u}\right)\left(B - L\right) + z_{H}Y$$

Model	$\kappa = z_q/z_u$
B – L	1
Y-sequential	1/4
SO (10)-GUT	-1
Right-handed	0

Results

$\kappa M_{Z'} g_z z_H z_q z_u z_d z_l z_e z_k$

Figure 1: Comparison of the observed and expected 95% CL UL on $\sigma \times BR$ from 13 TeV ATLAS dilepton resonance search data (2016) with the theoretical predictions of various models.

Results

κ Mz' gz ZH Zq Zu Zd Zi Ze Zk

ATLAS dilepton □ Γ_Z □ T parameter ATLAS dijet

Figure 2: Exclusion in the g_z - $M_{Z'}$ plane, using 13 TeV ATLAS dilepton and dijet data (2016) and electroweak precision data.

Minimal (anomalous) \cup (1) theories

The Green-Schwarz mechanism:

- · Integrate out heavy physics which cancels the anomalies
- $\mathcal{L} \supset \frac{\hbar}{M} G_{Z'} \text{Tr} \left[F^2 \right] + \hbar AAF$
- Cancels the triangle diagrams with a gauge variant term in $\ensuremath{\mathcal{L}}$
- The effective action (path integral) **is** gauge invariant, and hence observables are too

- $Q_z = 3z_q B + z_l L + z_H [Y (B L)]$
- No additional scalar
- No righthanded neutrinos
- Modification of exotic signatures:

 $Z' \to Z\gamma, Z' \to ZZ$

$$Q_{z} = 3z_{q}B + z_{l}L + z_{H}[Y - (B - L)]$$

Model	Ζ _Η	z _q	z_l
В	0	1/3	0
L	0	0	1
B + L	0	1/3	1
Q_R	1/2	0	-1/2
L _R	1	1/3	0
:			

.

Results: Exclusion plots

Preliminary results, ArXiv:1711.XXXXX.

Figure 3: Exclusion in the g_z - $M_{Z'}$ plane, using \sim 36 fb⁻¹ ATLAS and CMS 13 TeV data (2017), and electroweak precision tests.

Results: Exotic signatures

Preliminary results, ArXiv:1711.XXXXX.

Figure 4: 2D heat maps of $\sigma(pp \to Z') \times BR(Z' \to ZZ)$ in fb, for $M_{Z'} \sim 0.5$ TeV

- Substantial differences between the phenomenology of (anomalous) and non-anomalous U (1) theories
- LHC data heavily constrains the parameter space
- Plausible to detect Green-Schwarz nature of an anomalous Z^\prime at high luminosity LHC

Questions?