

ALTO: A new very-high-energy gamma-ray observatory in the Southern Hemisphere

Satyendra Thoudam

Yvonne Becherini Michael Punch Jean-Pierre Ernenwein Mohanraj Senniappan Tomas Bylund

Collaborating institutes and industry:

- Linnaeus University
- APC Laboratory, Paris (France), IN2P3/CNRS
- Aix-Marseille University (France)
- TBS Yard AB (Småland)

Partikeldagarna 2017, Stockholm

Linnæus University

Origin of cosmic rays?

Linnæus University

2

Astronomy @ 1 Trillion times the energy of optical photons

СТА

-180 [°]

Imaging Atmospheric Cherenkov Telescopes H.E.S.S **TeV gamma-ray sources**

(overlaid over the Fermi GeV sky) +90[°]

Main limitations:-

- Limited Field-of-View ~ 4°
- Limited duty cycle: Dark moonless night
- LST: 20-200 GeV; FoV ~ 4.5° • MST: 100 GeV - 10 TeV; FoV ~ 7°-8°
- SST: Few to 300 TeV; FoV ~ 9°

Linnæus University

3

Credit: TeVCat

Water Cherenkov detectors (WCDs)

[FoV ~ 60°, 100% duty cycle]

ALTO

HAWC

- Northern Hemisphere (Mexico)
- Altitude 4.1 km a.s.l
- 300 WCD detectors
- Energy range ≥ 1 TeV

TeV sky from HAWC

⁴ Linnæus University

Credit: HAWC Collaboration

5 Linnæus University

Science with ALTO

• Transients & highly variable sources:

- Gamma-ray bursts
- Fast radio bursts
- Blazars

• Extended sources:

- Active Galactic nuclei
- Fermi bubbles
- Galactic diffuse emission
- High-energy end of spectrum
- PeVatrons (Galactic sources->10¹⁵ eV)

• Monitoring/Survey:

- Known gamma-ray sources
- Galactic center region

• Cosmic-ray measurement:

- Spectrum
- Composition
- Anisotropy

Complementary observations & alerts to other observatories like CTA

GRB 020819B

Centaurus A

Credit: NASA/CXC/CfA

Credit: NASA GSFC

Detector array

Major challenge

- No. of gamma rays < 1% the cosmic-ray background
- Requires background rejection @ 99.9%

8 Linnæus University

⁹ Linnæus University

Air shower simulation: CORSIKA (version 7.4000)

Realistic model of Earth's atmosphere, magnetic field, refractive index,
Electromagnetic and hadronic interactions based on particle physics models

Detector simulation: GEANT4 (version 10.2)

All material properties are included

- Density, refractive index as function of wavelength
- Photon reflectivity, absorption and scattering coefficients as function of wavelength

All important physical processes are included

Electro-magnetic processes:

- Y's: Photoelectric effect, Compton scattering, Pair production, Rayleigh scattering
- e^{\pm} , μ^{\pm} , π^{\pm} , nuclei: Multiple scattering, ionisation, bremsstrahlung, annihilation (positrons)
- Unstable particles: Decay

Optical processes:

- Cherenkov and Scintillation photons production
- Their emission spectrum, absorption, scattering

Particle tracking

- All particles are completely tracked by GEANT4 except for optical photons inside water tank
- Optical photons (Cherenkov/Scintillation) are produced ~100,000 in each tank
- For optical photons inside water tank:
 - Only those that would hit the PMT are allowed to track by GEANT4
- For optical photons inside scintillator:
- They are all tracked by GEANT4

Different detector response to different type of particle

µ- (1 GeV)

Simulated Air shower events of 1 TeV observed with ALTO

Gamma ray **Cosmic-ray proton** Water tank array Water tank array Entries Entries 183 121 ŎŎŎŎŎŎŎŎŎŎŎŎŎ ŊŊŊŊŊŊŊŴŴŶŶŶŶŶŶ 80 3.5 3.5 60 3 2.5 2.5 40 2 2 20 1.5Z₀ 60 Meters l.5<mark>N</mark>010 -20 0.5 0.5 -40 n n -60 -0.5 -0.5 -80 -1 80 20 60 80 20 40 60 -80 -60 -40 -20 0 40 0 Meters Meters

80

60

40

20

-20

-40

-60

-80

-80

-60

-40

-20

Meters

Gamma ray

Air shower

-More compact -Regular pattern

Cosmic ray

-Clumpy -Hot spots in the scintillators at large distance from the core

¹³ Linnæus University

Current status

- Detector design: Finalised
- Measurement of optical properties of the tanks: Ongoing
- Measurement of PMT light response: Ongoing
- Signal/background discrimination study: Ongoing
- Prototype construction in LnU campus
 - Preparations almost ready

http://alto-gamma-ray-observatory.org

					<u> </u>
	=	alto-gamma-	ray-observatory.org		Ċ
ALTO T Home Page Very-High Presentations & Articles	he ALTO project a -Energy Gamma-Ray A ALTO på svenska	at Linnaeus Univers Astronomy About A Current sponsors	i ty LTO The Group at Contact us Blog	Linnaeus University Jobs	Collaborations
		Yo			
900					
ΑΙΤΟ					
ALIO					
A wide-field astronomical gamma-ray observatory					
at high-altitude in the southern hemisphere					
- developed in Växjö, Småland (Sweden) -					

Thank you for your attention !

¹⁵ Linnæus University