THE ICECUBE UPGRADE

CHAD FINLEY
OSKAR KLEIN CENTRE
PHYSICS DEPT
STOCKHOLM UNIVERSITY

PARTIKELDAGARNA, STOCKHOLM

Photo: Martin Wolf

2017 Nov 6

Infrastructure for Neutrino Astroparticle Physics

UU and SU prioritized infrastructure proposal to RFI

The IceCube Upgrade

New Ice Drill
7 New Strings, new module designs

Upgrade detector calibration

-> astrophysical neutrinos

Lower energy threshold

-> neutrino oscillation measurements

This talk

The Radio Array

ARIANNA / ARA -type surface array

Detect ultrahigh energy neutrinos

- -> astrophysical flux at higher energy than IceCube
- -> cosmogenic neutrinos from GZK

Allan Hallgren's talk

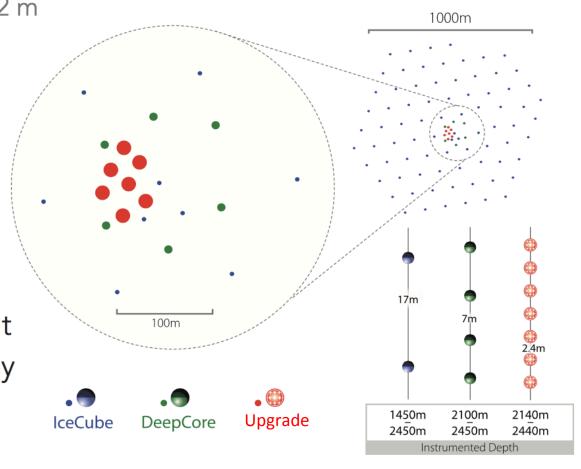
The IceCube Upgrade: Science Goals

Neutrino astronomy at high energy with recalibration and reanalysis of existing data

- Improved angular resolution and veto performance
- Tau neutrino identification
- Multi-messenger astronomy

Neutrino physics at low energy with new instrumentation

- Tau neutrino appearance and PMNS unitarity tests
- Precision measurements of $\sin^2\theta_{23}$ (incl. octant) and Δm^2_{32} at 10-20 GeV


The IceCube Upgrade

Seven new strings of multi-PMT mDOMs in the DeepCore region

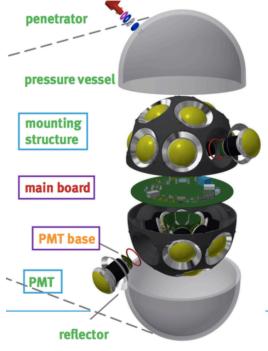
Inter-string spacing of ~22 m

 Suite of new calibration devices to boost IceCube calibration initiatives

 Improve scientific capabilities of IceCube at both high and low energy

DOM (Digital Optical Module) - Upgrade Edition

IceCube DOM



D-Egg

mDOM

5 160 currently operating in IC

(20% built in Sweden)

4π sensitivity

Compact diam. reduces drilling costs

4π sensitivity

Directionality

Low noise via coincidence req.

DOM (Digital Optical Module) – Upgrade Edition

IceCube DOM

D-Egg

mDOM

5 160 currently operating in IC

(20% built in Sweden)

4π sensitivity

Compact diam. reduces drilling costs

4π sensitivity

Directionality

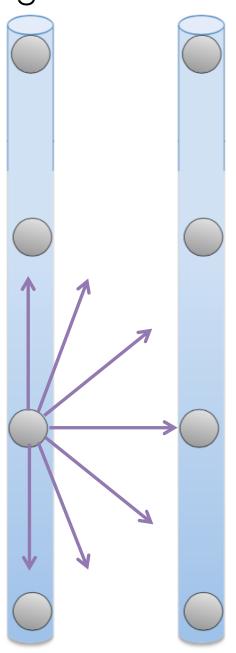
Low noise via coincidence req. LED flashers in all directions for precision calibration

New Calibration with the IceCube Upgrade

Eff. scattering length for photons in ice ~ 20 m

Detector inter-string spacing:

– IceCube: 125 m


- DeepCore: 40 m

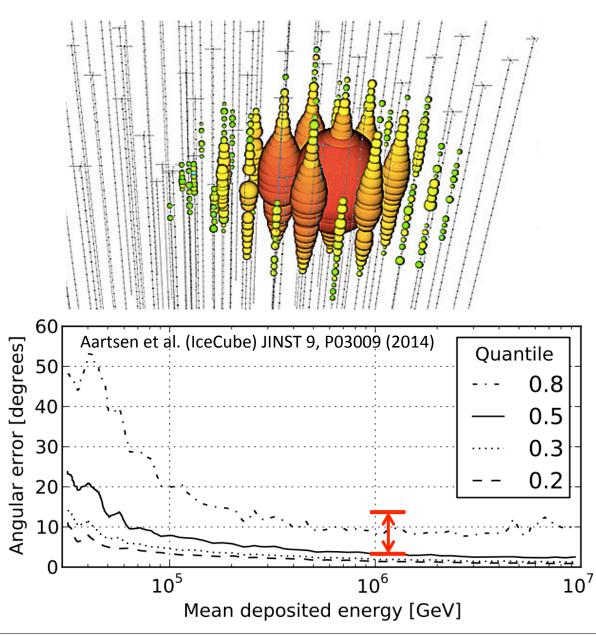
- Upgrade: 20 m Probe $L < \lambda_{\text{scatter}}$ for first time

Deploy improved calibration devices with wide range of accessible angles

Vertical measurements - characterize "hole" ice

Improved modeling of light propagation in the ice

Improved Angular Resolution: Cascade Events


"Bert" – 1st PeV neutrino

100 000 photoelectrons detected

directional unc.: 13°

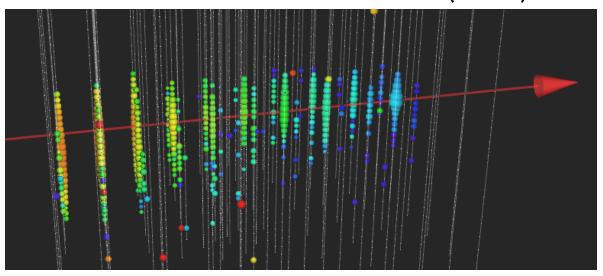
<u>Statistical error</u> for PeV events is ~ 2°

Systematic uncertainties on modeling of light propagation in ice leads to ~ 15° errors

Improved Angular Resolution: Track Events

Statistical angular uncertainty for HE tracks: ~ 0.1°

Systematic uncertainty for HE tracks from ice model uncertainties: ~ 0.6°


Confident identification of counterparts is limited by angular resolution uncertainty (source confusion: multiple possible sources within error box)

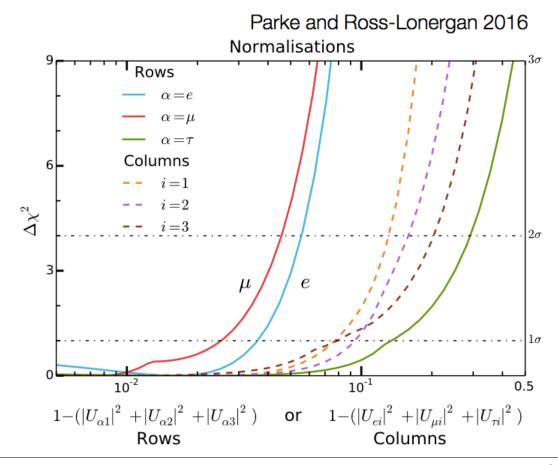
2017 Sept. 22:

- > 100 TeV neutrino
- ~ 2°x1° err. region 90% CL

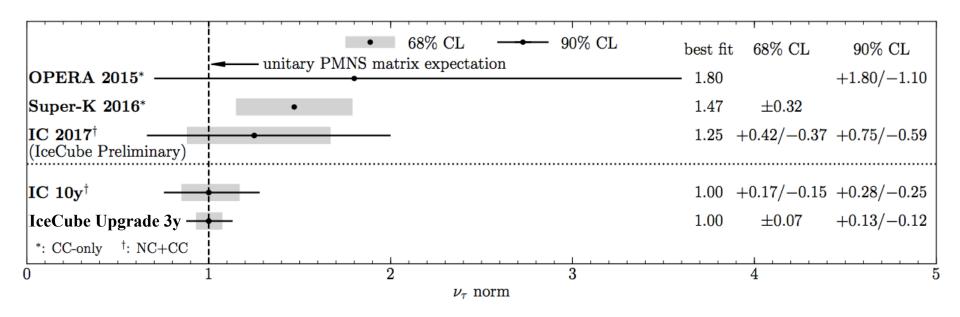
Fermi / MAGIC detections of flaring Blazar galaxy at same time and well within dir. uncertainty

IC-170922 Public alert event (GCN)

Tau Appearance and PMNS Unitarity


Direct tests of unitarity of the PMNS mixing matrix are limited by imprecision of tau neutrino appearance data

30% deviations in tau row allowed at 2σ CL by world data


Tau lepton mass suppresses CC cross section – appearance measurements difficult in longbaseline experiments

Advantage with atmospheric neutrino experiments

$$U = \left(egin{array}{ccc} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{ au 1} & U_{ au 2} & U_{ au 3} \ \end{array}
ight)$$

Tau Appearance and PMNS Unitarity

3yr DeepCore analysis (IC2017) already competitive with 15yr Super-K result

Analysis improvements and additional data will yield world-leading result

Upgrade required to achieve precision better than 10%

The IceCube Upgrade

Objectives:

- Atmospheric tau neutrino appearance test unitarity of PMNS matrix
- New ice calibration will enable re-analysis of 10 years collected data
- Multi-messenger astronomy goal: identify sources of astro. v flux

A "Mid-Scale" NSF proposal. Must be stand-alone science project, targeting the upgrade of an existing detector.

Naturally opens a path toward a much larger extension of IceCube array in the future, IceCube-Gen2.