Determining Dark Matter properties with a XENONnT/LZ signal and LHC-Run3 mono-jet searches

in collaboration with S. Baum, R. Catena, J. Conrad, K. Freese [arXiv:1709.06051]

Martin B. Krauss

Partikeldagerna 2017

Stockholm

November 7th, 2017

Introduction

- Direct Detection and Collider searches effective and complementary way to explore possible DM models
- XENONnT will start 2019
- LHC Run 3 planned start in 2020, 300 fb⁻¹ in 2022
- Assuming O(100) XENONnT events in 2021 (just below current limits) → What predictions can be made for LHC Run 3 monojet searches?

Method

- 1. Identify monojet crosssections compatible with $\mathcal{O}(100)$ XENONnT events in the $M_{\rm med}$ σ plane.
- 2. Identify type of DM nucleon interactions and possibly spin
 - \leftarrow observation or lack of mono-jet signal

Simplified models & EFT

\mathcal{O}_1	$1_{\chi}1_N$
\mathcal{O}_2	$(\vec{v}^{\perp})^2$
\mathcal{O}_3	$i\vec{S}_N \cdot \left(\frac{\vec{q}}{m_N} \times \vec{v}^{\perp}\right)$
\mathcal{O}_4	$\vec{S}_{\chi} \cdot \vec{S}_N$
\mathcal{O}_5	$i\vec{S}_{\chi} \cdot (\frac{\vec{q}}{m_N} \times \vec{v}^{\perp})$
\mathcal{O}_6	$\left(\frac{\vec{q}}{m_N}\cdot\vec{S}_N\right)\left(\frac{\vec{q}}{m_N}\cdot\vec{S}_\chi\right)$
\mathcal{O}_7	$\vec{S}_N \cdot \vec{v}^{\perp}$
\mathcal{O}_8	$\vec{S}_{\chi} \cdot \vec{v}^{\perp}$
\mathcal{O}_9	$i\vec{S}_{\chi} \cdot (\vec{S}_N \times \frac{\vec{q}}{m_N})$
\mathcal{O}_{10}	$i \frac{\vec{q}}{m_N} \cdot \vec{S}_N$
\mathcal{O}_{11}	$i \frac{\vec{q}}{m_N} \cdot \vec{S}_{\chi}$
\mathcal{O}_{12}	$\vec{S}_{\chi} \cdot (\vec{S}_N imes \vec{v}^{\perp})$
\mathcal{O}_{13}	$i(\vec{S}_{\chi} \cdot \vec{v}^{\perp})(\frac{\vec{q}}{m_N} \cdot \vec{S}_N)$
\mathcal{O}_{14}	$i(\vec{S}_N \cdot \vec{v}^{\perp})(\frac{\vec{q}}{m_N} \cdot \vec{S}_{\chi})$
\mathcal{O}_{15}	$-(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_N}) \left((\vec{S}_N \times \vec{v}^{\perp}) \cdot \frac{\vec{q}}{m_N} \right)$
	$\mathcal{L}_{NR} = \sum_{\alpha=n,p} \sum_{i=1}^{10} c_i^{\alpha} \mathcal{O}_i^{\alpha},$

[Fitzpatrick et al., 2012]

Simplified models & EFT

\mathcal{O}_1	$1_{\chi}1_N$
\mathcal{O}_2	$(\vec{v}^{\perp})^{2}$
\mathcal{O}_3	$i\vec{S}_N \cdot \left(\frac{\vec{q}}{m_N} \times \vec{v}^{\perp}\right)$
\mathcal{O}_4	$ec{S}_{\chi}\cdotec{S}_N$
\mathcal{O}_5	$i\vec{S}_{\chi} \cdot \left(\frac{\vec{q}}{m_N} \times \vec{v}^{\perp}\right)$
\mathcal{O}_6	$(\frac{\vec{q}}{m_N} \cdot \vec{S}_N)(\frac{\vec{q}}{m_N} \cdot \vec{S}_{\chi})$
\mathcal{O}_7	$\vec{S}_N \cdot \vec{v}^{\perp}$
\mathcal{O}_8	$\vec{S}_{\chi} \cdot \vec{v}^{\perp}$
\mathcal{O}_9	$i\vec{S}_{\chi} \cdot (\vec{S}_N \times \frac{\vec{q}}{m_N})$
\mathcal{O}_{10}	$i \frac{\vec{q}}{m_N} \cdot \vec{S}_N$
\mathcal{O}_{11}	$i \frac{\vec{q}}{m_N} \cdot \vec{S}_{\chi}$
\mathcal{O}_{12}	$\vec{S}_{\chi} \cdot (\vec{S}_N imes \vec{v}^{\perp})$
\mathcal{O}_{13}	$i(\vec{S}_{\chi} \cdot \vec{v}^{\perp})(\frac{\vec{q}}{m_N} \cdot \vec{S}_N)$
\mathcal{O}_{14}	$i(\vec{S}_N \cdot \vec{v}^{\perp})(\frac{\vec{q}}{m_N} \cdot \vec{S}_{\chi})$
\mathcal{O}_{15}	$-(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_N})\left((\vec{S}_N \times \vec{v}^{\perp}) \cdot \frac{\vec{q}}{m_N}\right)$
	$\mathcal{L}_{NR} = \sum \sum^{15} c_i^{\alpha} \mathcal{O}_i^{\alpha},$
	$\alpha = n, p \ i = 1$

[Fitzpatrick et al., 2012]

$$\begin{split} \mathcal{L}_{\chi Z'q} &= \mathrm{i} \bar{\chi} \mathcal{D} \chi - m_{\chi} \bar{\chi} \chi - \frac{1}{4} \mathcal{Z}'_{\mu \nu} \mathcal{Z}'^{\mu \nu} + \frac{1}{2} m_Z'^2 \mathcal{Z}'_{\mu} \mathcal{Z}'^{\mu} \\ &- \frac{\lambda_{Z'}}{4} (\mathcal{Z}'_{\mu} \mathcal{Z}'^{\mu})^2 + \mathrm{i} \bar{q} \mathcal{D} q - m_q \bar{q} q \\ &- \frac{\lambda_3}{2} \bar{\chi} \gamma^{\mu} \chi \mathcal{Z}'_{\mu} \mathcal{Z}^{\mu} - \mathrm{i} \lambda_4 \bar{\chi} \gamma^{\mu} \gamma^5 \chi \mathcal{Z}'_{\mu} \\ &- h_3 (\bar{q} \gamma_{\mu} q) \mathcal{Z}'^{\mu} - h_4 (\bar{q} \gamma_{\mu} \gamma^5 q) \mathcal{Z}'^{\mu} \, . \end{split}$$

2 / 11

Simplified models & EFT

 \rightarrow

\mathcal{O}_1	$1_{\chi}1_N$
\mathcal{O}_2	$(\vec{v}^{\perp})^2$
\mathcal{O}_3	$i\vec{S}_N \cdot \left(\frac{\vec{q}}{m_N} \times \vec{v}^{\perp}\right)$
\mathcal{O}_4	$\vec{S}_{\chi} \cdot \vec{S}_N$
\mathcal{O}_5	$i\vec{S}_{\chi} \cdot (\frac{\vec{q}}{m_N} \times \vec{v}^{\perp})$
\mathcal{O}_6	$\left(\frac{\vec{q}}{m_N}\cdot\vec{S}_N\right)\left(\frac{\vec{q}}{m_N}\cdot\vec{S}_\chi\right)$
\mathcal{O}_7	$\vec{S}_N \cdot \vec{v}^\perp$
\mathcal{O}_8	$ec{S}_\chi \cdot ec{v}^\perp$
\mathcal{O}_9	$i\vec{S}_{\chi} \cdot (\vec{S}_N \times \frac{\vec{q}}{m_N})$
\mathcal{O}_{10}	$i \frac{\vec{q}}{m_N} \cdot \vec{S}_N$
\mathcal{O}_{11}	$i \frac{\vec{q}}{m_N} \cdot \vec{S}_{\chi}$
\mathcal{O}_{12}	$\vec{S}_{\chi} \cdot (\vec{S}_N \times \vec{v}^{\perp})$
\mathcal{O}_{13}	$i(\vec{S}_{\chi} \cdot \vec{v}^{\perp})(\frac{\vec{q}}{m_N} \cdot \vec{S}_N)$
\mathcal{O}_{14}	$i(\vec{S}_N\cdot\vec{v}^{\perp})(\frac{\vec{q}}{m_N}\cdot\vec{S}_{\chi})$
\mathcal{O}_{15}	$-(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_N})\left((\vec{S}_N \times \vec{v}^{\perp}) \cdot \frac{\vec{q}}{m_N}\right)$
	$\mathcal{L}_{NR} = \sum_{\alpha=n,p} \sum_{i=1}^{^{\mathrm{ID}}} c_i^{\alpha} \mathcal{O}_i^{\alpha},$

[Fitzpatrick et al., 2012]

 \downarrow

[Dent et al., 2015]

	Uncharged Mediator	Charged Mediator
c_1	$\frac{h_1^N \lambda_1}{m_\phi^2} - \frac{h_3^N \lambda_3}{m_G^2}$	$ \left(\frac{l_2^{\dagger} l_2 - l_1^{\dagger} l_1}{4 m_{\Phi}^2} + \frac{d_2^{\dagger} d_2 - d_1^{\dagger} d_1}{4 m_V^2} \right) f_T^N + \left(-\frac{l_2^{\dagger} l_2 + l_1^{\dagger} l_1}{4 m_{\Phi}^2} + \frac{d_2^{\dagger} d_2 + d_1^{\dagger} d_1}{8 m_V^2} \right) \mathcal{N}^N $
c_4	$\frac{4h_4^N \lambda_4}{m_G^2}$	$\frac{l_{2}^{\dagger}l_{2}-l_{1}^{\dagger}l_{1}}{m_{\Phi}^{2}}\delta^{N} - \left(\frac{l_{1}^{\dagger}l_{1}+l_{2}^{\dagger}l_{2}}{m_{\Phi}^{2}} + \frac{d_{2}^{\dagger}d_{2}-d_{1}^{\dagger}d_{1}}{2m_{V}^{2}}\right)\Delta^{N}$
c_6	$\frac{h_2^N \lambda_2 m_N}{m_{\phi}^2 m_{\chi}}$	$(\frac{l_1^{\dagger}l_1 - l_2^{\dagger}l_2}{4m_{\Phi}^2} + \frac{d_2^{\dagger}d_2 - d_1^{\dagger}d_1}{4m_V^2})\frac{m_N}{m_\chi}\tilde{\Delta}^N$
c_7	$\frac{2h_4^N \lambda_3}{m_G^2}$	$\left(\frac{l_1^{\dagger}l_2 - l_2^{\dagger}l_1}{2m_{\Phi}^2} + \frac{d_1^{\dagger}d_2 + d_2^{\dagger}d_1}{4m_V^2}\right)\Delta^N$
c_8	$-\frac{2h_3^N\lambda_4}{m_G^2}$	$\left(\frac{l_1^{\dagger}l_2 - l_2^{\dagger}l_1}{2m_{\Phi}^2} - \frac{d_1^{\dagger}d_2 + d_2^{\dagger}d_1}{4m_V^2}\right)\mathcal{N}^N$
c_9	$-\frac{2h_4^N \lambda_3 m_N}{m_\chi m_G^2} - \frac{2h_3^N \lambda_4}{m_G^2}$	$(\frac{l_1^{\dagger}l_2 - l_2^{\dagger}l_1}{2m_{\Phi}^2} - \frac{d_1^{\dagger}d_2 + d_2^{\dagger}d_1}{4m_V^2})\mathcal{N}^N - (\frac{l_1^{\dagger}l_2 - l_2^{\dagger}l_1}{2m_{\Phi}^2} - \frac{d_1^{\dagger}d_2 + d_2^{\dagger}d_1}{4m_V^2})\frac{m_N}{m_\chi}\Delta^N$
c_{10}	$\frac{h_2^N \lambda_1}{m_{\phi}^2}$	$i(\frac{l_1^{\dagger}l_2 - l_2^{\dagger}l_1}{4m_{\Phi}^2} + \frac{d_2^{\dagger}d_1 - d_1^{\dagger}d_2}{4m_V^2})\tilde{\Delta}^N - i\frac{l_1^{\dagger}l_2 - l_2^{\dagger}l_1}{m_{\Phi}^2}\delta^N$
c_{11}	$-\frac{h_1^N\lambda_2 m_N}{m_\phi^2 m_\chi}$	$i(\frac{l_{2}^{1}l_{1}-l_{1}^{1}l_{2}}{4m_{\Phi}^{2}}+\frac{d_{2}^{1}d_{1}-d_{1}^{1}d_{2}}{4m_{V}^{2}})\frac{m_{N}}{m_{\chi}}f_{T}^{N}+i\frac{l_{1}^{1}l_{2}-l_{2}^{1}l_{1}}{m_{\Phi}^{2}}\frac{m_{N}}{m_{\chi}}\delta^{N}$
c_{12}	0	$\frac{l_{\mathbb{Z}}^{\dagger}l_{1}-l_{\mathbb{T}}^{\dagger}l_{2}}{m_{\Phi}^{2}}\delta^{N}$

2 / 11

DM Detection of XENONnT

Scalar DM	Op.	g_q	g_{DM}	$M_{\rm eff}$ [GeV]
	1	h_1	g_1	14564.484
	1	h_3	g_4	10260.217
	7	h_4	g_4	4.509
	10	h_2	g_1	10.706
Fermionic DM	Op.	g_q	g_{DM}	$M_{\rm eff}$ [GeV]
	1	h_1	λ_1	14564.484
	1	h_3	λ_3	7255.068
	4	h_4	λ_4	147.354
	6	h_2	λ_2	0.286
	7	h_4	λ_3	3.188
	8	h_3	λ_4	225.159
	10	h_2	λ_1	10.706
	11	h_1	λ_2	351.589
Vector DM	Op.	g_q	g_{DM}	$M_{\rm eff}$ [GeV]
	1	h_1	b_1	14564.484
	1	h_3	b_5	17771.216
	4	h_4	$\Re(b_7)$	188.302
	4	h_4	$\Im(b_7)$	3.215
	5	h_3	$\Im(b_6)$	6.946
	7	h_4	b_5	7.809
	8	h_3	$\Re(b_7)$	287.728
	9	h_4	$\Im(b_6)$	3.674
	10	h_2	b_1	10.706
	11	h_3	$\Im(b_7)$	223.794

Value for the effective mediator mass

$$M_{\rm eff} \equiv M_{\rm med} \sqrt{\frac{(0.1)^2}{g_q g_{\rm DM}}}$$

needed to generate 150 signal events at XENONnT (20 ton×year exposure)

Two types of spectra:

Type A: maximum at E=0 (q=0) **Type B**: maximum at E \neq 0 (q \neq 0)

Canonical SI and SD interactions are of type A.

Use test statistic for model selection

$$q_0 = -2 \ln \left[rac{\mathcal{L}(oldsymbol{d} \,|\, \widehat{oldsymbol{\Theta}}_0, \mathcal{H}_0)}{\mathcal{L}(oldsymbol{d} \,|\, \widehat{oldsymbol{\Theta}}_a, \mathcal{H}_a)}
ight]$$

10000 pseudo-experiments each

Impact on LHC monojet searches

- Translating the $\mathcal{O}(100)$ XENONnT events into regions in the $M_{\rm med}$ - σ plane
- Mediator necessarily couples to quarks. → Can be produced in pp collisions
- Can decay into pair of DM particles (E^T_{miss})
- Initial state radiation (e.g., gluon) → jet in detector

Current Limits and projections

For 12.9 fb^{-1} integrated luminosity \rightarrow monojet limit $\sigma \times \mathcal{A} \approx 40 \text{ fb}$ (Event level with selection cuts). For projections after Run 3 we consider scaling with L and \sqrt{L} .

- Scan over g_{DM}
- M_{eff} as input from DD
- $\blacksquare ~g_q$ is a function of $g_{\rm DM}$ and $M_{\rm eff}$
- Require g_{DM} , $g_q < \sqrt{4\pi}$ for perturbativity
- Also require $\Gamma_{med} < M_{med}$
- Obtain a region in the M_{med} plane consistent with O(100) XENONnT events

7 / 11

Monojet predictions

XENONnT-predicted mono-jet cross-sections as a function of M_{med} for various models compared with the LHC current limits and projected sensitivity. We assume O(100) signal events at XENONnT, $m_{DM} = 50 \text{ GeV}$ and vary the mediator mass within $1 \text{ TeV} < M_{med} < 10 \text{ TeV}$.

Dependence on m_{DM}

Regions in the $M_{\rm med} - (\sigma \times A)$ plane that are compatible with the detection of $\mathcal{O}(100)$ signal events at XENONnT for three representative simplified models, namely $\hat{\mathcal{O}}_1(h_3, b_5)$, $\hat{\mathcal{O}}_1(h_1, b_1)$ and $\hat{\mathcal{O}}_{11}(h_1, \lambda_2)$, and for the DM particle masses $m_{\rm DM} = 10, 30, 50, 100$ and 200 GeV. Where the cases $m_{\rm DM} = 30$ GeV and $m_{\rm DM} = 100$ GeV are omitted, they only marginally differ from the $m_{\rm DM} = 50$ GeV case.

Dependence on XENONnT events

Discussion & Outlook

For m_{DM} = 50 GeV two mutually exclusive scenarios compatible with $\mathcal{O}(100)$ XENONnT events:

- Models generating O_1 out of reach for Run 3
- Models generating \mathcal{O}_8 or \mathcal{O}_{11} can produce observable monojet signals
- Holds also true for $10 \,\mathrm{GeV} < m_{\mathrm{DM}} < 100 \,\mathrm{GeV}$
 - $ightarrow \mathcal{O}_1$ regions remain below Run 3 reach
 - $\rightarrow \mathcal{O}_{11}$ remains (partly) testable

Possible future developments:

- Effects of running couplings and operator mixing
- Constraints from thermal production, indirect DM searches
- Charged mediators
- Non-universal DM coupling