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Composite Higgs Models

The general idea:

» Extend the SM with a sector which via running of the couplings
become strongly coupled at A < Mpj, with a global symmetry
which gets broken by a condensate.

> Build the model such that the Goldstone sector includes the
whole Higgs multiplet with quantum numbers of the SM Higgs.

Higgs is a Goldstone
V(H)=0
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How to generate the scalar potential?
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Fermion masses: two approaches

The bilinear approach. (as in Technicolor)
[Dimopoulos, Susskind], [Eichten, Lane]

A ||
at the UV: ATiIQLOtR + h.c.

uv
[O] = d and carries the Higgs quantum numbers. Running down to A
(where the dynamics of SSB kicks in)

mg ~ A0 (AUV>

Alert: dangerous 4-fermion operators [Dimopoulus, Ellis]




The linear approach (Partial Compositeness) [Kaplan]

Ag
atthe UV: —2& _Opqgr+

N=TE Optrthe. _—

AdL 5/2
U ) uv )
[Or.r] = dr g, fermionic operators carrying quarks quantum

numbers.

A dL+dR—5
my ~ AqL)\tR’U (M)

|SM) = cos ¢ |elementary) + sin ¢ |composite)

Better: alleviates the 4-fermion operators

Sort of GIM protection
(dq)? sin ¢
M2
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How to build such mod-els?




Underline theories

Building an underlying theory that contains both a composite Higgs
and composite top partners is not an easy task, as many conditions
need to be satisfied: [Ferretti, Karateev]

>

>

>

>

Simple hypercolor group (Gg¢)

Asymptotically free theories

Absence of gauge anomalies and Witten’s global anomalies
Symmetry breaking pattern: Grp — Hp D Ceys O Gsur

The most attractive channel (MAC) should not break neither
GH ¢ nor chs

G/H > (1,2,2)g of Geys. (the Higgs boson)

Fermionic hypercolor singlets € (3,2); /6 and (3,1)9/3 of G5y
(at least 3" family)

B and L symmetry



We shall consider models with two chiral fermion species, each with
n; flavours:
Global symmetry: U(ng) X U(ny)
» Colourless 1, which produce the Higgs as a pNGB, after
condensation occurs;

» Colourfull x, since we want to obtain the top partners.
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EW coset Colour coset
SU(4) x SU(4) Complex: U B) X SUB)'
» Complex: SU@p > Complex: SUB)p
. SU(4) » Pseudoreal: SO,
» Pseudoreal: Sp(4) ) Sp(6)
» Real: SU(5) > Real: STA0)



Coset [ HC P X —ax /4y Yy Model
SO(7 : 5/6 M1
SU(5) _ SU(6) soggg SR @& ki 5//12 B v
SO(5 SO(6 SO(7) ; 5/6 M3
(5) (6) 50(9) 5 X Spin 6 x F 573 23 Al
SU(5)  SU(6)
Sp(4) 5 X Ag 6 x F 5/3 13 M5
SO(5)  Sp(6)
SU(5) SU(3)2 SU(4) 5% Ag 3 x (F,F) 5/3 3 M6
50(5) W S50(10) 5% F 3 X (Spin, Spin) 5/12 M7
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SU@4)?  SU(6) | SO(10) 4 x (Spin,Spin) 6 X F &y a3 | MIO
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SU(5) _ SU(6) so(e) °xF @R Eh 5/12 B w2
SO(5 SO(6 SO(7) . 5/6 M3
(5) (6) 50(9) 5 X Spin 6 x F 573 23 Al
SU(5) SU(6)
Sp(4) 5 X Ag 6 x F 5/3 13 M5
SO(5) ~ Sp(6)
SU(5)  SU(3)2 SU(4) 5 X Ao 3 x (F,F) 5/3 3 M6
50(5) SU(3) S50(10) 5% F 3 X (Spin, Spin) 5/12 M7
SU(4) SU(6) Sp(4) 4xXF 6 X Ao 1/3 - M8
Sp(4) & 50(6) SO(11) 4 x Spin 6 X F 8/3 > M9
SU@4)?  SU(6) | SO(10) 4 x (Spin,Spin) 6 X F &y a3 | MIO
SU@) 50(6) SU(4) 4 x (F,F) 6 X Ao 2/3 Ml
SU(4)2  SU(3)? _ _
x SU(5) 4 x (F,F) 3 x (A2,Az) 4/9 213 Mi2
SU(4) SU(3)

Always 2 U(1)s that are spontaneously broken: U (1), U(1),.
One combination of the two has an anomaly with the G ¢

U(1)pGhc #0 =

@ NyT (Y) 4+ ¢ Ny T (x) =0

[U(1)y + U] Gl #0

For the anomaly free U (1), associated to the light pPNGB, we have
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A timid composite pseudo-scalar (TCP)

The pNGBs a and 7/can be both described by the effective
Lagrangian. We look at the decoupling limit m,, > m,.

1
L= 3 (Opadta —m2a® Zszf—a Vs Wy
!
a 3 a apy g2KW i Iy g KB v
+f¢1(16 3 GG+ e W W + 2B“”BM)



A timid composite pseudo-scalar (TCP)

The pNGBs a and 71’can be both described by the effective
Lagrangian. We look at the decoupling limit m,, > m,.

1
L= 5(8 ad*a — m2a? Zszf—a\Ilf%\Iff
f
22K 2 2
a 9 Kw . =, 9°Kp
+ g Ga Ga;uz + Wz quu + 73 BMI/
fa (16 1672 #¥ 1672 1
» WZW coefficients K; are fully K [Kw [ K T C/ T Je/ly
determined b uant. num.; M2 | 87 | 12 | 59 | 26 | 24
y¥,xq ’ M3 | 63 | 87 82 | 22 28
1 M4 -11. 12. -17. 1.5 2.0
» C is also fixed for each Vo I o I i
g g . M6 -4.9 4.4 1.1 1.5 14
individual model; v el vy N -
£ M8 | -16 | 19 | 23 | 19 28
> KS ~ Ky — Cy/2 (top loop) Mo | 0. | 56 | 22 | 070 12
7 P X MIO | 94 | 56 | -19. | 070 15
> = MIL | 33 | 33 | 55 | 17 3.1
Y w+ AB MI2 | 41 | 46 | 63 | 18 2.6




A timid composite pseudo-scalar (TCP)

Effective coupling of a to the Higgs are induced at loop level. -
Relevant vertices present in the spurion term —mt(h)e’Ct“/ faly, W, g

Ky ~ 1+ O/ f2)

K t ;
""< O e e “
coo S % a \\__a

3C?m? K, A? s
Lhaa = g 575~ 108 —51(0,a)(0"a)
a t
7 t
h
< O
___a \\ _______ a \C\L
3Cymiga 2
Lhza = 32 fou (k¢ — Ky) log gh(aua)Z”



TCP Phenomenology

» a is produced in gluon fusion;

» adecaysto gg, WW, ZZ, Z~, vy, \Iff\ilf (fully determined BR)
> Assc. production with a Z is tiny; No bounds from LEP;

» For heavier a, LHC di-boson searches apply [JHEP 1701, 094]

» Weak indirect bounds from h — aa (BSM).

> h — aa — 4, bbuu, bbr, ... have very low signal rate due to
small haa coupling and small BR(a — 7, f f). The same for
h— Za

» b-associated production is small

» t-associated production could yield bounds in future searches



TCP Phenomenology
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TCP Phenomenology
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[PRL109, 121801] (CMS)

[ATLAS-CONF-2011-020]
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TCP Phenomenology

[PRL109, 121801] (CMS) [PRL113,17801] (ATLAS)
[CMS-PAS-HIG-17-013]
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TCP Phenomenology

jayvs BR(h — bSM) < .34 Yy
[PRL109, 121801] (CMS) (THEP1608, 045] [PRL113,17801] (ATLAS)
[ATLAS-CONF-2011-020] (ATLAS+CMS) [CMS-PAS-HIG-17-013]
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TCP Phenomenology

jayvs BR(h — bSM) < .34 Yy
[PRL109, 121801] (CMS) (THEP1608, 045] [PRL113,17801] (ATLAS)
[ATLAS-CONF-2011-020] (ATLAS+CMS) [CMS-PAS-HIG-17-013]
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How to explore the mass gap 15 to 65 GeV?

> h — aa (BSM) will not dramatically increase
fa ~ BR(h — aa)'/*
» Extending p e resonance searches to higher mass?

» Extending v~y resonance searches to even lower mass?
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> h — aa (BSM) will not dramatically increase

fa ~ BR(h — aa)'/*

» Extending p e resonance searches to higher mass?

» Extending v~y resonance searches to even lower mass?

> ...or looking for other decay channels: 77!
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Production cross section for Kg g/ fa=1/TeV
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77 BRs are not small in many models

Large gluon-fusion production XS
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How to explore the mass gap 15 to 65 GeV?

*17. Projected reach after an

Generate signal sample pp —a — 7
integrated Luminosity of 300 fb~!
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Boosted di-tau resonances, produced via gluon fusion, that can
effectively cover this open window!



Final remarks



Conclusions

» CHM provide a viable solution to the hierarchy problem with
still many challenges and room for exploration;

» EFT descriptions of CHM are only a part of the story. UV
embeddings need to be studied in detail, and they will lead to
novel BSM signatures;

» UV descriptions generally contain a SM singlet pNGB which
couples to the SM gauge bosons through the WZW term; Fully
determined by the quantum numbers of the underlying fermions;

» In a mass range of 15 - 65 GeV, to our knowledge, none of the
existing LEP, Tevatron, and LHC searches are sensitive to this
pseudo-scalar. (timid composite pseudo-scalar (TCP))

» Searching for the TCP in the di-tau channel with ISR against
which the di-tau system recoils looks promising. Initial study
shows very good sensitivity in this mass window.



Thanks for the time!

Questions?
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