Composite Higgs and Timid Composite Pseudo-scalars

Hugo Serôdio

based on:

A. Belyaev, G. Cacciapaglia, H. Cai, T. Flacke, **HS**, A. Parolini [PRD 94 (2016) no 1, 015004] A. Belyaev, G. Cacciapaglia, H. Cai, G. Ferretti, T. Flacke, **HS**, A. Parolini [JHEP 1701 (2017) 094] G. Cacciapaglia, G. Ferretti, T. Flacke, **HS**, [arXiv: 1710.11142]

Partikeldagarna, Stockholm, November 7, 2017

Composite Higgs and Underlying Dynamics

Timid composite pseudo-scalar (TCP)

Final remarks

Composite Higgs and Underlying Dynamics The general idea:

- Extend the SM with a sector which via running of the couplings become strongly coupled at $\Lambda \ll M_{PL}$ with a global symmetry which gets broken by a condensate.
- Build the model such that the Goldstone sector includes the whole Higgs multiplet with quantum numbers of the SM Higgs.

Higgs is a Goldstone

$$V(H) = 0$$

The general idea:

- Extend the SM with a sector which via running of the couplings become strongly coupled at $\Lambda \ll M_{PL}$ with a global symmetry which gets broken by a condensate.
- Build the model such that the Goldstone sector includes the whole Higgs multiplet with quantum numbers of the SM Higgs.

Higgs is a Goldstone

$$V(H) = 0$$

How to generate the scalar potential?

Composite Higgs Models

Fermion masses: two approaches

The bilinear approach. (as in Technicolor) [Dimopoulos, Susskind], [Eichten, Lane]

at the UV:
$$\frac{\lambda_t}{\Lambda_{UV}^{d-1}} \overline{q}_L \mathcal{O} t_R + \text{h.c.}$$

 $[\mathcal{O}] = d$ and carries the Higgs quantum numbers. Running down to Λ (where the dynamics of SSB kicks in)

$$m_t \simeq \lambda_t v \left(\frac{\Lambda}{\Lambda_{UV}}\right)^{d-1}$$

Alert: dangerous 4-fermion operators [Dimopoulus, Ellis]

The linear approach (Partial Compositeness) [Kaplan]

at the UV:
$$\frac{\lambda_{q_L}}{\Lambda_{UV}^{dL-5/2}}\overline{\mathcal{O}_R}q_L + \frac{\lambda_{t_R}}{\Lambda_{UV}^{dL-5/2}}\overline{\mathcal{O}_L}t_R + \text{h.c.}$$
$$[\mathcal{O}_{L,R}] = d_{L,R}, \text{ fermionic operators carrying quarks quantum numbers.}$$

$$m_t \simeq \lambda_{q_L} \lambda_{t_R} v \left(\frac{\Lambda}{\Lambda_{UV}}\right)^{d_L + d_R - 5}$$
$$|\mathbf{SM}\rangle = \cos\varphi \,|\mathbf{elementary}\rangle + \sin\varphi \,|\mathbf{composite}\rangle$$

Better: alleviates the 4-fermion operators

Underline theories

Global symmetry

Underline theories

Building an underlying theory that contains both a composite Higgs and composite top partners is not an easy task, as many conditions need to be satisfied: [Ferretti, Karateev]

- Simple hypercolor group (G_{HC})
- Asymptotically free theories
- Absence of gauge anomalies and Witten's global anomalies
- Symmetry breaking pattern: $G_F \to H_F \supset C_{cus} \supset G_{SM}$
- The most attractive channel (MAC) should not break neither G_{HC} nor G_{cus}
- $G/H \ni (\mathbf{1}, \mathbf{2}, \mathbf{2})_0$ of G_{cus} . (the Higgs boson)
- ► Fermionic hypercolor singlets ∈ (3, 2)_{1/6} and (3, 1)_{2/3} of G_{SM} (at least 3rd family)
- B and L symmetry

We shall consider models with two chiral fermion species, each with n_i flavours:

Global symmetry: $U(n_{\psi}) \times U(n_{\chi})$

- Colourless ψ, which produce the Higgs as a pNGB, after condensation occurs;
- Colourfull χ , since we want to obtain the top partners.

We shall consider models with two chiral fermion species, each with n_i flavours:

Global symmetry: $U(n_{\psi}) \times U(n_{\chi})$

- Colourless ψ, which produce the Higgs as a pNGB, after condensation occurs;
- Colourfull χ , since we want to obtain the top partners.

EW coset • Complex: $\frac{SU(4) \times SU(4)'}{SU(4)_D}$ • Pseudoreal: $\frac{SU(4)}{Sp(4)}$ • Real: $\frac{SU(5)}{SO(5)}$

Colour coset

• Complex: $\frac{SU(3) \times SU(3)'}{SU(3)_D}$ • Pseudoreal: $\frac{SU(6)}{Sp(6)}$ • Real: $\frac{SU(6)}{SO(6)}$

Coset	HC	ψ	χ	$-q_{\chi}/q_{\psi}$	Y_{χ}	Model
SU(5) $SU(6)$	SO(7) SO(9)	$5 \times \mathbf{F}$	$6 \times \mathbf{Spin}$	$\frac{5/6}{5/12}$	1/3	M1 M2
$\overline{SO(5)} \land \overline{SO(6)}$	$\begin{array}{c}SO(7)\\SO(9)\end{array}$	$5 \times {\rm Spin}$	$6 \times F$	$\frac{5}{6}{5/3}$	2/3	M3 M4
$\frac{SU(5)}{SO(5)} \times \frac{SU(6)}{Sp(6)}$	Sp(4)	$5 \times A_2$	$6 \times \mathbf{F}$	5/3	1/3	M5
$\frac{SU(5)}{SO(5)} \times \frac{SU(3)^2}{SU(3)}$	$\begin{array}{c} SU(4)\\ SO(10) \end{array}$	$\begin{array}{c} 5 \times \mathbf{A}_2 \\ 5 \times \mathbf{F} \end{array}$	$\begin{array}{c} 3 \times (\mathbf{F}, \overline{\mathbf{F}}) \\ 3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}}) \end{array}$	$5/3 \\ 5/12$	1/3	M6 M7
$\frac{SU(4)}{Sp(4)} \times \frac{SU(6)}{SO(6)}$	$\begin{array}{c} Sp(4)\\ SO(11) \end{array}$	$\begin{array}{l} 4 \times \mathbf{F} \\ 4 \times \mathbf{Spin} \end{array}$	$\begin{array}{c} 6 \times \mathbf{A_2} \\ 6 \times \mathbf{F} \end{array}$	$\frac{1/3}{8/3}$	2/3	M8 M9
$\frac{SU(4)^2}{SU(4)} \times \frac{SU(6)}{SO(6)}$	$\begin{array}{c} SO(10)\\ SU(4) \end{array}$	$\begin{array}{l} 4 \times ({\rm Spin}, \overline{\rm Spin}) \\ 4 \times ({\rm F}, \overline{\rm F}) \end{array}$	$\begin{array}{c} 6 \times \mathbf{F} \\ 6 \times \mathbf{A}_2 \end{array}$	$\frac{8/3}{2/3}$	2/3	M10 M11
$\boxed{\frac{SU(4)^2}{SU(4)} \times \frac{SU(3)^2}{SU(3)}}$	SU(5)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes (\mathbf{A}_2, \overline{\mathbf{A}_2})$	4/9	2/3	M12

Coset	HC	ψ	χ	$-q_\chi/q_\psi$	Y_{χ}	Model
SU(5) $SU(6)$	SO(7) SO(9)	$5 \times \mathbf{F}$	$6 \times \mathbf{Spin}$	$5/6 \\ 5/12$	1/3	M1 M2
$\overline{SO(5)} \land \overline{SO(6)}$	$\begin{array}{c}SO(7)\\SO(9)\end{array}$	$5 \times {\rm Spin}$	$6 \times F$	$\frac{5}{6}{5/3}$	2/3	M3 M4
$\frac{SU(5)}{SO(5)} \times \frac{SU(6)}{Sp(6)}$	Sp(4)	$5 \times A_2$	$6 \times \mathbf{F}$	5/3	1/3	M5
$\frac{SU(5)}{SO(5)} \times \frac{SU(3)^2}{SU(3)}$	$\begin{array}{c} SU(4)\\ SO(10) \end{array}$	$\begin{array}{c} 5 \times \mathbf{A}_2 \\ 5 \times \mathbf{F} \end{array}$	$\begin{array}{c} 3\times ({\bf F},\overline{{\bf F}})\\ 3\times ({\bf Spin},\overline{{\bf Spin}}) \end{array}$	$5/3 \\ 5/12$	1/3	M6 M7
$\frac{SU(4)}{Sp(4)} \times \frac{SU(6)}{SO(6)}$	$\begin{array}{c} Sp(4)\\ SO(11) \end{array}$	$\begin{array}{l} 4 \times \mathbf{F} \\ 4 \times \mathbf{Spin} \end{array}$	$\begin{array}{c} 6 \times \mathbf{A}_2 \\ 6 \times \mathbf{F} \end{array}$	$\frac{1/3}{8/3}$	2/3	M8 M9
$\frac{SU(4)^2}{SU(4)} \times \frac{SU(6)}{SO(6)}$	$\begin{array}{c} SO(10)\\ SU(4) \end{array}$	$\begin{array}{l} 4 \times ({\rm Spin}, \overline{{\rm Spin}}) \\ 4 \times ({\rm F}, \overline{{\rm F}}) \end{array}$	$\begin{array}{c} 6 \times \mathbf{F} \\ 6 \times \mathbf{A}_2 \end{array}$	$\frac{8/3}{2/3}$	2/3	M10 M11
$\boxed{\frac{SU(4)^2}{SU(4)} \times \frac{SU(3)^2}{SU(3)}}$	SU(5)	$4 imes (\mathbf{F}, \overline{\mathbf{F}})$	$3\times (\mathbf{A}_2, \overline{\mathbf{A}_2})$	4/9	2/3	M12

Always 2 U(1)s that are spontaneously broken: $U(1)_{\psi}$, $U(1)_{\chi}$. One combination of the two has an anomaly with the G_{HC}

 $U(1)_{\psi,\chi}G_{HC}^2 \neq 0 \quad \Rightarrow \quad \begin{bmatrix} U(1)_{\psi} + U(1)_{\chi} \end{bmatrix} G_{HC}^2 \neq 0$

For the anomaly free U(1), associated to the light pNGB, we have

 $q_{\psi}N_{\psi}T(\psi) + q_{\chi}N_{\chi}T(\chi) = 0$

Timid composite pseudo-scalar

A timid composite pseudo-scalar (TCP)

The pNGBs a and η' can be both described by the effective Lagrangian. We look at the decoupling limit $m_{\eta'} \gg m_a$.

$$\begin{aligned} \mathcal{L} &= \frac{1}{2} \left(\partial_{\mu} a \partial^{\mu} a - m_{a}^{2} a^{2} \right) - \sum_{f} i \, C_{f} \frac{m_{f}}{f_{a}} a \, \overline{\Psi}_{f} \gamma_{5} \Psi_{f} \\ &+ \frac{a}{f_{a}} \left(\frac{g_{s}^{2} K_{g}}{16\pi^{2}} G_{\mu\nu}^{a} \tilde{G}^{a\mu\nu} + \frac{g^{2} K_{W}}{16\pi^{2}} W_{\mu\nu}^{i} \tilde{W}^{i\mu\nu} + \frac{g'^{2} K_{B}}{16\pi^{2}} B_{\mu\nu} B^{\mu\nu} \right) \end{aligned}$$

A timid composite pseudo-scalar (TCP)

The pNGBs a and η' can be both described by the effective Lagrangian. We look at the decoupling limit $m_{\eta'} \gg m_a$.

$$\begin{aligned} \mathcal{L} &= \frac{1}{2} \left(\partial_{\mu} a \partial^{\mu} a - m_{a}^{2} a^{2} \right) - \sum_{f} i \, C_{f} \frac{m_{f}}{f_{a}} a \, \overline{\Psi}_{f} \gamma_{5} \Psi_{f} \\ &+ \frac{a}{f_{a}} \left(\frac{g_{s}^{2} K_{g}}{16\pi^{2}} G_{\mu\nu}^{a} \tilde{G}^{a\mu\nu} + \frac{g^{2} K_{W}}{16\pi^{2}} W_{\mu\nu}^{i} \tilde{W}^{i\mu\nu} + \frac{g'^{2} K_{B}}{16\pi^{2}} B_{\mu\nu} B^{\mu\nu} \right) \end{aligned}$$

- WZW coefficients K_i are fully determined by ψ, χ quant. num.;
- C_f is also fixed for each individual model;
- $K_g^{\text{eff}} \simeq K_g C_t/2 \text{ (top loop)}$

$$\blacktriangleright K_{\gamma\gamma} = K_W + K_B$$

	K_g	K_W	K_B	C_{f}	f_a/f_ψ
M1	-7.2	7.6	2.8	2.2	2.1
M2	-8.7	12.	5.9	2.6	2.4
M3	-6.3	8.7	-8.2	2.2	2.8
M4	-11.	12.	-17.	1.5	2.0
M5	-4.9	3.6	0.40	1.5	1.4
M6	-4.9	4.4	1.1	1.5	1.4
M7	-8.7	13.	7.3	2.6	2.4
M8	-1.6	1.9	-2.3	1.9	2.8
M9	-10.	5.6	-22.	0.70	1.2
M10	-9.4	5.6	-19.	0.70	1.5
M11	-3.3	3.3	-5.5	1.7	3.1
M12	-4.1	4.6	-6.3	1.8	2.6

A timid composite pseudo-scalar (TCP)

Effective coupling of *a* to the Higgs are induced at loop level. Relevant vertices present in the spurion term $-m_t(h)e^{iC_t a/f_a}\bar{\Psi}_{tL}\Psi_{tR}$ $\kappa_{t/V} \sim 1 + \mathcal{O}(v^2/f_a^2)$

$$\mathcal{L}_{haa} = \frac{3C_t^2 m_t^2 \kappa_t}{8\pi^2 f_a^2 v} \log \frac{\Lambda^2}{m_t^2} h(\partial_\mu a)(\partial^\mu a)$$

 $\mathcal{L}_{hZa} = \frac{3C_t m_t^2 g_A}{2\pi^2 f_a v} (\kappa_t - \kappa_V) \log \frac{\Lambda^2}{m_t^2} h(\partial_\mu a) Z^\mu$

- ► *a* is produced in gluon fusion;
- a decays to $gg, WW, ZZ, Z\gamma, \gamma\gamma, \Psi_f \bar{\Psi}_f$ (fully determined BR)
- ► Assc. production with a Z is tiny; No bounds from LEP;
- ► For heavier *a*, LHC di-boson searches apply [JHEP 1701, 094]
- Weak indirect bounds from $h \rightarrow aa$ (BSM).
- ▶ $h \rightarrow aa \rightarrow 4\gamma$, $bb\mu\mu$, $bb\tau\tau$, ... have very low signal rate due to small haa coupling and small $BR(a \rightarrow \gamma\gamma, ff)$. The same for $h \rightarrow Za$
- b-associated production is small
- t-associated production could yield bounds in future searches

How to explore the mass gap 15 to 65 GeV?

- ► $h \rightarrow aa$ (BSM) will not dramatically increase $f_a \sim BR(h \rightarrow aa)^{1/4}$
- Extending $\mu\mu$ resonance searches to higher mass?
- Extending $\gamma\gamma$ resonance searches to even lower mass?

How to explore the mass gap 15 to 65 GeV?

- ▶ $h \rightarrow aa$ (BSM) will not dramatically increase $f_a \sim BR(h \to aa)^{1/4}$
- Extending $\mu\mu$ resonance searches to higher mass?
- Extending $\gamma\gamma$ resonance searches to even lower mass?
- ... or looking for other decay channels: $\tau \tau!$

 $\tau\tau$ BRs are not small in many models

How to explore the mass gap 15 to 65 GeV?

Generate signal sample $pp \rightarrow a \rightarrow \tau^+ \tau^-$. Projected reach after an integrated Luminosity of 300 fb⁻¹

Boosted di-tau resonances, produced via gluon fusion, that can effectively cover this open window!

Final remarks

Conclusions

- CHM provide a viable solution to the hierarchy problem with still many challenges and room for exploration;
- EFT descriptions of CHM are only a part of the story. UV embeddings need to be studied in detail, and they will lead to novel BSM signatures;
- UV descriptions generally contain a SM singlet pNGB which couples to the SM gauge bosons through the WZW term; Fully determined by the quantum numbers of the underlying fermions;
- ► In a mass range of 15 65 GeV, to our knowledge, none of the existing LEP, Tevatron, and LHC searches are sensitive to this pseudo-scalar. (*timid* composite pseudo-scalar (TCP))
- Searching for the TCP in the di-tau channel with ISR against which the di-tau system recoils looks promising. Initial study shows very good sensitivity in this mass window.

