Subleading colour corrections in Herwig

Johan Thorén

In collaboration with Malin Sjodahl and Simon Platzer

Partikeldagarna, November 7, 2017

1/17



Table of contents

© Motivation
@ Subleading N. in dipole showers
© Preliminary results

@ Conclusions and outlook

2/17



Motivation

Section 1

3/17



Motivation

What does a standard parton shower do?

@ We want to describe pp collisions at the LHC.
@ Dresses the hard scattering with QCD radiation.

@ Parton showers use approximations that are exact in the
collinear and soft regions of emission phase space.

@ Work in the N, — oo limit, i.e. interference terms suppressed
by powers of 1/N, are neglected. In the collinear limit the
leading N, approximation is exact.
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Motivation

Why do subleading N, showers?

@ 1/N2 is not that small and 1/N, suppression possible if there
are two quark-lines.

o More energy

e many more coloured partons.
e many more colour suppressed terms.

@ For a leading N, shower, the number of colour connected
pairs grow roughly as Npartons-

@ The number of pairs of coloured partons grows as Ngartons.

@ Useful for exact next-to-leading order matching.
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in dipole showers

Section 2

Subleading N, in dipole showers
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Subleading N in dipole showers

Dipole Factorization

Dipole factorization gives, whenever ¢ and j become collinear or
one of them soft:

‘M,H_l(...,pi, ...,pj, cees Pl )’ 2 =

1
> 5o Ml P ) Vg (i g o) | M (P P --)
wtig PP

An emitter ij splits into two partons 4 and j, with the spectator k
absorbing the momentum to keep all partons (before and after)

on-shell.
(Catani, Seymour arXiv:hep-ph/9605323)
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Subleading N in dipole showers

Dipole Factorization

The (spin averaged) splitting kernel is
Vija(pis pjs o) = =87 Vi (pi, b pr) g —

Where, for a final-final dipole configuration, we have for example

2(1—=2)
1—2)2+p2 /siji

Va—agk(Pi,0js k) = Cr (( —(1+ z))
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Subleading N in dipole showers

Emission probability

For a leading N, shower, the emission probability would be

dni1(p?,2) d(ij, k colour connected)
don, 149-

ijg

dPyje(p,2) = Vij(1, 2)

Including subleading emissions, instead gives

dpni1(pt,z)  —1 Ma| Ty - Ti[Ma)
dén Tfj M |?

dPing(}ﬁ_, Z) = Vij,k(pi, Z)
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Subleading N in dipole showers

Emission probability

@ Leading N.: qg and gg can radiate coherently.

@ Subleading N.: ¢q can also radiate coherently, but suppressed
by a colour factor.
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Subleading N in dipole showers

Overall picture

Using Herwigs dipole shower

@ Instead of only colour connected emitter-spectator pairs
radiating, all possible pairs can radiate.

@ The emission probabilities are modified by a factor

2 2

n o __
Wik =

which is included using the reweighting in Herwig.

@ We evolve the colour structure to be able to evaluate the
factor above for the next emission.

@ Continue for a set number of emissions and then do the rest
with the standard shower.
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Preliminary results

Preliminary pp — j7 results

Number of emissions Exclusive jet multiplicity
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Preliminary results

Jet multiplicity for pp — 77 subprocesses

Exclusive jet multiplicity Exclusive jet multiplicity
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(a) 99 — g9 (b) uu — uu
o Jet cut: py cut = 20 GeV.

@ Difference as compared to the leading shower can be in
different directions.
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Preliminary results

Pseudorapidity and A¢s

Pseudorapidity of leading jet Azimuthal separation between jets
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@ So far we have mainly been looking at standard QCD

observables for pp, it should not be hard to find observables
with sizable corrections of order 1/N..
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Conclusions and outlook

Conclusions

Conclusions:

@ Subleading colour corrections can have sizable effects on
standard QCD observables.

Work in progress:
@ Look at more processes.
@ Look at the effect on analyses with data.

@ Look for observables where subleading N, has a large effect
(found for eTe™ collisions in (Platzer, Sjodahl,
arXiv:1206.0180)).

Future work:

@ Tuning, virtual corrections, updated hadronization model.
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Extra slides

How about hadronization and MPI?

Exclusive jet multiplicity

—— MPlleading
—— MPI 3 subem

(N Ipb]

The effects of the subleading emissions are not washed out by
either hadronization or MPI.
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Extra slides

Example of 1/N, suppressed terms

Leading colour structure:
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Extra slides

Example of 1/N, suppressed terms

Leading colour structure:

Dl

2
2
o N¢.

Interference term:
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xtra slides

Example of 1/N, suppressed terms
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Extra slides

Density operator

Evaluating the first colour matrix element corrections, wyj., after
the hard process is straightforward as the amplitude |M,,) has
been calculated. For the next emission we need | M,,11).

We can write the amplitude as a vector in some basis (trace,
multiplet, etc.),

d7l/
‘Mn> = Z Cn,a|an> M, = (Cn,la ---ycn,dn)T
a=1

Observe that
M2 = M S, My = Tr (S x M M],)
and
(M| T - Ty M) = Tr (S x Ty, M MUTE )
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Extra slides

Density operator

We construct an “amplitude matrix" M, = ./\/ln./\/lil that we
evolve by

4
My = — ZZ TOg Z]kpz7p]7pk)T MTT

i#£] k#1,j P TZJ o

where D p
k
‘/7']7k = TZQJ : :
Dj - Pk
This allows us to calculate the “colour matrix element corrections
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Extra slides

Colour matrix element correction

With a way to evolve the density operator we can calculate the
colour matrix element corrections for any number of emissions

1 T (Snn x T, Mt )
T? Tr (S x My,)

ij

n o __
Wik =

@ wj;. can be negative, this is included through the weighted
Sudakov algorithm (Bellm, J. et. al. arXiv:1605.08256).
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