

A search for pair-produced resonances in 4-jet final state

Eva Brottmann Hansen Partikeldagarna 2017, Stockholm

searched for and are ~excluded below 1 TeV Allowing RPV couplings significantly

relaxes existing bounds on mass

- Top squarks in R-parity conserving scenarios have been thoroughly
- Naturalness suggests higgsinos and top squarks below 1 TeV
- Models with Dirac gauginos, additional gluinos

supersymmetric particle (LSP) to decay to two jets

- Axigluons, colorons, compositeness, topcolor
 - $m_{\widetilde{\chi}_1^0}$ [GeV] 450 t0L/t1L combined t2L. SC WW t1L, t2L tc, t1L Expected limits 250 200 150

100

50

2

Motivation

arXiv:1710.07171

Eva Hansen, Lund University

3

 \rightarrow Use b-tagging and mass symmetry of the resonances

The results have been submitted to EPJC and are available now at

Fully hadronic final states without missing E_{τ} challenging signature due to large SM multi-jet production cross-section

massive color octet (a) $\tilde{t}\tilde{t}^* \to (\bar{d}\bar{s})(ds)$

- Interpreted in a SUSY simplified model where the LSP is the top squark \tilde{t}
- This search for pair-produced, massive, colored particles deacying to two jets uses 36.7 fb⁻¹ of \sqrt{s} = 13 TeV with the ATLAS detector

Analysis Overview

large for the decay to be prompt

RPV couplings assumed sufficiently λ_{323}'' $\lambda_{312}^{\prime\prime}$ dAdditional limits set on pair-produced

Hmm.. ATLAS, you say.. What is that?

- Jets are reconstructed from 3-D topological clusters calibrated at the electromagnetic scale
- Reconstructed with Anti-kt jet algorithm with r = 0.4
- At least 4 jets with pT > 120 GeV
- |η| < 2.4
- Pairing: minimize $\Delta R_{min} = \Sigma |\Delta R_i 1|$
- $\Delta R_{min} < -0.002*(m_{avg}/GeV 225) + 0.72$ if $m_{avg} <= 225 \text{ GeV}$
- $\Delta R_{min} < -0.0013^*(m_{avg}/GeV 225) + 0.72$ if $m_{avg} > 225 \text{ GeV}$

Signal Region Selection

• The mass of the two resonances should be similar:

$$\frac{m_1 - m_2|}{m_1 + m_2} < 0.05$$

• The jets should be central in the detector:

 $|\cos(\theta^*)|$ <0.3

ALSO a dedicated two-b-tagged SR is used for scenarios where RPV couplings involving third generation quarks dominate

•

ullet

resonances

Smooth distribution from multi-jet processes

- Mass window defined for each mass • point to maximise expected signal significance
- Counting experiment performed in ulleteach mass window

7

Signal Region Selection

 $m_{avg} = \frac{1}{2} (m_1 + m_2)$

Final analysis discriminant is the average mass of the reconstructed

CFRN-EP-2017-183

Background Estimation

- Multi-jet background dominates the inclusive SR
 - Estimated from data
- $t\bar{t}$ background significant in the b-tagged SR
 - Estimated from simulation
- ABCD method assumes no correlation between the discriminating variables

- Four control regions (CR)
- One validation region (VR) for testing performance and assigning an uncertainty to the background estimate

Background Uncertainty

- Data-driven multi-jet background estimate \rightarrow No model uncertainty
- Uncertainty primarily from the method
- This is estimated by fitting data in the VR and taking the bin-by-bin difference from the ABCD prediction
- The relative deviation is then smoothed as function of m_{ava}

Eva Hansen, Lund University

Systematic Uncertainties

- Top background and signal also affected by detector effects and MC modeling
 - Jet energy scale and resolution
 - B-tagging efficiency and mis-tag rate
 - Choice of MC generator
 - Renormalisation and factorisation scale
- Evaluated by comparing the nominal samples to additional samples with systematic variations

CERN-EP-2017-183

Results and Interpretation

- The m_{avg} distribution in the inclusive and b-tagged regions
- Agreement between data and expected background

Results and Interpretation

- The inclusive SR used to set limits on stop, sgluon, and coloron production with decays in to a jet pair
- The *b*-tagged SR used for limits on stop to a *b* and light-quark jet
- Acceptance drops below a stop mass of 200 GeV due to trigger and jet requirements

- Use background fit as primary method for background estimation
 - Acceptance increase
 - More flexible for different signal shapes
 - Less model dependent
 - Could use two "fat jets" with substructure

- [1] ATLAS Collaboration (Georges Aad (Marseille, CPPM) et al.), ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider, Jun 29, 2015. 54 pp. Published in Eur.Phys.J. C75 (2015) no.10, 510, Erratum: Eur.Phys.J. C76 (2016) no.3, 153 CERN-PH-EP-2015-138
- [2] ATLAS Collaboration (Morad Aaboud (Oujda U.) et al.), A search for pair-produced resonances in four-jet final states at √s=13 TeV with the ATLAS detector, Oct 19, 2017. 41 pp. CERN-EP-2017-183

CERN-EP-2017-183

LUND

Back up

• Observed number of events in inclusive SR

	$m_{\tilde{t}}~[{\rm GeV}]$	Window [GeV]	N_{Data}	$N_{\rm Bkg}$ (± stat. ± syst.)	$\mid N_{\text{Sig}} \ (\pm \text{ stat.} \pm \text{ syst.})$
	100	[100, 110]	5899	$5910 \pm 90 \pm 70$	$519 \pm 23 \pm 68$
	125	[120, 135]	13497	$13450{\pm}120{\pm}$ 180	$1890 \pm 50 \pm 190$
	150	[140, 160]	18609	$18390{\pm}130{\pm}250$	$2540 \pm 50 \pm 130$
	175	[165, 185]	17742	$17800{\pm}130{\pm}250$	$2280 \pm 50 \pm 210$
	200	[185, 210]	19844	$19660\pm140\pm290$	$2250 \pm 50 \pm 170$
	225	[210, 235]	14898	$15180\pm120\pm$ 230	$1620 \pm 40 \pm 100$
	250	[230, 260]	13689	$13750 \pm 110 \pm 220$	$1440 \pm 80 \pm 140$
	275	[255, 285]	9808	$9860 \pm 100 \pm 170$	$1010 \pm 70 \pm 80$
	300	[275, 310]	8514	$8790 \pm 90 \pm 160$	$789 \pm 52 \pm 31$
	325	[300, 335]	6180	$6330\pm 80\pm 120$	$600 \pm 50 \pm 50$
	350	[320, 365]	5802	$5900\pm\ 70\pm\ 120$	$509 \pm 39 \pm 19$
	375	[345, 390]	4113	$4250\pm 60\pm 90$	$324 \pm 25 \pm 31$
	400	[365, 415]	3531	$3590\pm 60\pm 90$	$274 \pm 14 \pm 18$
	425	[385, 440]	3108	$3010\pm 50\pm 80$	$198 \pm 23 \pm 10$
	450	[410, 465]	2281	$2230\pm 40\pm 60$	$154 \pm 17 \pm 27$
	475	[430, 490]	1906	$1920 \pm 40 \pm 60$	$116 \pm 12 \pm 8$
	500	[455, 515]	1495	$1513 \pm 35 \pm 49$	$94 \pm 10 \pm 8$
	525	[475, 540]	1318	$1327 \pm 33 \pm 46$	$71 \pm 7 \pm 4$
	550	[500, 565]	1050	$1048 \pm 29 \pm 39$	$48.5\pm 5.4\pm 2.2$
	575	[520, 590]	924	$912\pm\ 27\pm\ 36$	$44 \pm 4 \pm 4$
	600	[545, 620]	745	$744\pm\ 25\pm\ 31$	$36.9 \pm 1.6 \pm 2.3$
	625	[565, 645]	645	$626\pm\ 22\pm\ 28$	$30.3\pm\ 2.8\pm\ 3.4$
	650	[585, 670]	536	$554\pm\ 21\pm\ 26$	$23.3 \pm 2.1 \pm 1.9$
	675	[610, 695]	438	$473\pm 19\pm 24$	$20.3 \pm 1.6 \pm 0.9$
	700	[630, 720]	404	$422\pm 18\pm 22$	$15.4 \pm 1.2 \pm 0.9$
	725	[655, 745]	341	$335\pm 16\pm 18$	$13.6 \pm 1.0 \pm 0.9$
	750	[675, 770]	306	$310\pm \ 16\pm \ 18$	$12.4\pm 0.9\pm 0.9$
CERN-EP-2017-183	775	[700, 795]	265	$243\pm 14\pm 14$	$9.7\pm 0.7\pm 0.7$
	800	[720, 820]	238	$205\pm 12\pm 13$	$8.5\pm 0.6\pm 0.6$

Back up

• Observed number of events in the inclusive SR

$m_{\tilde{t}} \; [\text{GeV}]$	Window [GeV]	$\mid N_{\rm Data}$	$\mid N_{\rm Bkg} \ (\pm \text{ stat.} \pm \text{ syst.})$	$\mid N_{\rm Sig} \ (\pm \ {\rm stat.} \ \pm \ {\rm syst.})$
100	[100, 110]	256	$285 \pm 18 \pm 51$	$308 \pm 18 \pm 52$
125	[120, 135]	803	$798 \pm 28 \pm 107$	$1090 \pm 40 \pm 140$
150	[140, 160]	809	$789 \pm 23 \pm 132$	$1510 \pm 40 \pm 130$
175	[165, 185]	544	$555 \pm 16 \pm 47$	$1300 \pm 40 \pm 140$
200	[185, 210]	592	$554 \pm 13 \pm 47$	$1220 \pm 40 \pm 110$
225	[210, 235]	414	$436 \pm 11 \pm 35$	$893 \pm 28 \pm 90$
250	[230, 260]	416	$385 \pm 10 \pm 32$	$750 \pm 60 \pm 120$
275	[255, 285]	302	$283 \pm 8 \pm 24$	$480 \pm 50 \pm 60$
300	[275, 310]	242	$250 \pm 8 \pm 23$	$390 \pm 40 \pm 50$
325	[300, 335]	181	$179 \pm 6 \pm 17$	$273 \pm 33 \pm 34$
350	[320, 365]	169	$161 \pm 6 \pm 16$	$225 \pm 25 \pm 20$
375	[345, 390]	110	$111 \pm 5 \pm 12$	$147 \pm 16 \pm 22$
400	[365, 415]	80	$96 \pm 4 \pm 11$	$114 \pm 9 \pm 12$
425	[385, 440]	85	$79 \pm 4 \pm 10$	$76 \pm 14 \pm 11$
450	[410, 465]	71	$54.2\pm 3.0\pm 7.1$	$48 \pm 9 \pm 10$
475	[430, 490]	67	$46.8 \pm 2.7 \pm 6.5$	$40 \pm 7 \pm 5$
500	[455, 515]	38	$35.8\pm 2.3\pm 5.3$	$26 \pm 5 \pm 5$
525	[475, 540]	31	$35.1\pm 2.3\pm 5.5$	$21.7 \pm 3.9 \pm 2.8$
550	[500, 565]	20	$30.2\pm 2.1\pm 5.0$	$12.4\pm\ 2.5\pm\ 2.3$
575	[520, 590]	14	$26.3\pm 2.0\pm 4.6$	$17.5\pm\ 2.7\pm\ 3.5$
600	[545, 620]	14	$19.5 \pm 1.6 \pm 3.5$	$11.4\pm 0.9\pm 1.5$
625	[565, 645]	15	$15.8 \pm 1.4 \pm 3.0$	$9.3\pm 1.5\pm 1.4$
650	[585, 670]	14	$14.6 \pm 1.3 \pm 2.9$	$6.9 \pm 1.2 \pm 1.1$
675	[610, 695]	13	$13.6 \pm 1.3 \pm 2.8$	$5.5\pm 0.8\pm 0.6$
700	[630, 720]	6	$12.1 \pm 1.2 \pm 2.6$	$4.3\pm 0.6\pm 0.5$
725	[655, 745]	5	$9.9 \pm 1.1 \pm 2.2$	$4.4\pm 0.6\pm 0.8$
750	[675, 770]	4	$8.4\pm 0.1\pm 1.9$	$3.4\pm 0.5\pm 0.5$
2 775	[700, 795]	8	$6.9\pm 0.9\pm 1.6$	$2.4\pm 0.3\pm 0.5$
S 800	[720, 820]	7	$ 5.3 \pm 0.7 \pm 1.3$	$1.7\pm 0.3\pm 0.2$

CERN-EP-2017-183

- The observed local p₀-value
- The global p_o-value is computed from pseudo experiments

