Luminosity measurement from track counting in ATLAS

University

Patrawan Pasuwan (Prim)

Partikeldagarna Stockholm 6-7 November 2017

Outline

- * The ATLAS detector
- Luminosity
 - Definition and formalism
 - Luminosity measurement in ATLAS
- Luminosity measurement from track counting
 - * How it is performed
 - Preliminary results from 2016 and 2017 data

Luminosity

Track counting

The ATLAS Detector

A cross sectional diagram of the ATLAS detector with various particle trajectories (photo from <u>atlasexperiment.org/photos</u>)

- ATLAS is one of the four main detectors of the LHC
- General purpose detector
- Inner Detector (ID)
 - Composed of silicon sensors and drift tubes
 - Charged-particle tracks identification
- ECAL where electrons and photons deposit energy
- HCAL where hadrons deposit energy
- Muon Spectrometer (MS) for muon detection

ATLAS detector Luminosity Luminosity inelastic pp collisions Instantaneous LHC luminosity per bunch crossing bunches protons

partons (quarks, gluons)

Proton bunches inside the LHC (photo from Ihcathome)

Luminosity is a measurement of a number of

Track counting

- * μ is the average number of inelastic pp collisions per bunch crossing (BC)
- f_r is the revolution frequency
- σ_{inel} is the cross-section of an inelastic pp collision
- The total instantaneous luminosity \mathcal{L} can be obtained by

$$\mathcal{L} = \sum_{b=1}^{n_{b}} \mathcal{L}_{b} = n_{b} \langle \mathcal{L}_{b} \rangle = n_{b} \frac{\langle \mu \rangle f_{r}}{\sigma_{\text{inel}}} \quad [\text{cm}^{-2}\text{s}^{-1}]$$

n_b is the number of bunch pairs

Luminosity

Why measure luminosity?

To measure a process cross-section

$$\sigma_{ extbf{proc}} = rac{N_{ extbf{proc}}}{\int \mathcal{L} extbf{d} t} \hspace{0.5cm} ; \hspace{1cm} \int \mathcal{L} extbf{d} t \hspace{0.5cm}$$
 is the integrated luminosity

- * The measured cross-section is used to compare to the value obtained from theory
- To predict a number of events from a given process

$$N_{\rm proc} = \sigma_{\rm proc} \cdot \int \mathcal{L} dt$$

Track Counting Luminosity

* The average number of tracks per BC is linearly proportional to $<\mu>$

 $< N_{
m tracks} >= lpha < \mu >$; lpha is constant

* \mathcal{L} can be obtained by counting the number of tracks from charged particles inside the ID

$$\mathcal{L} = n_{\rm b} \frac{\langle \mu \rangle f_{\rm r}}{\sigma_{\rm inel}} = n_{\rm b} \frac{\langle N_{\rm tracks} \rangle f_{\rm r}}{\alpha \sigma_{\rm inel}}$$

* $n_{\rm b}, f_{\rm r}, \alpha, \sigma_{\rm inel}$ are constants that are either known or can be determined in special calibration runs

$$\mathcal{L} = \beta < N_{\text{tracks}} > \qquad \beta = \frac{n_{\text{b}} f_{\text{r}}}{\alpha \sigma_{\text{inel}}}$$

Track Reconstruction Efficiency

- * Track reconstruction efficiency depends on μ and time
 - * μ : more difficult to reconstruct the tracks when μ is high due to larger number of detector hits (larger occupancy)
 - * Time: detector condition, e.g. dead modules
 - * Measure the efficiency from $Z \rightarrow \mu^+ \mu^-$ events
- * The number of fake tracks also depend on μ as the probability of getting fake tracks increases with occupancy

Luminosity

Track counting

Track Counting in 2017 Data

* A luminosity block (LB) is a time interval over which the instantaneous luminosity is approximately constant

Track Counting in 2016 Data

- Integrated luminosity from different algorithms from the runs in 2016, compared to LUCID — ATLAS's default online luminosity detector
- Work in progress to produce similar results for 2017 data

Summary

- The integrated luminosity of the data sample is an essential input to all physics analyses in ATLAS
 - Cross-section measurements
 - Predictions for number of instances of a given process
- One of the ways to measure luminosity in ATLAS is by counting the number of tracks in the ID
- The luminosity results in 2016 data from TC are presented and compared with results from LUCID
- * Work in progress to produce results from 2017 data

Stockholm Track Counting Members

Sara Strandberg Jona Senior Lecturer Senior Department of Physics, KTH SU

Jonas Strandberg Senior Lecturer KTH

Alex Kastanas Research engineer KTH

Christian Ohm Researcher KTH

Giulia Ripellino PhD student KTH

Patrawan Pasuwan PhD student Department of Physics, SU BACKUP

Luminosity

The ATLAS Detector

Photos from the <u>ATLAS LMTF page</u>

- ATLAS has subdetectors in the forward and backward regions
- For monitoring activity in high eta region
- * All can be used to measure luminosity
- LUCID is currently the default online luminosity detector
- * It is a Cherenkov detector

Luminosity

Track counting

Track Counting Efficiency

tag muon ΔR_{Tag} Measure the efficiency by doing Z tag-and-probe * From Z—> $\mu^+\mu^-$ events, compare the ID * tracks with the muon spectrometer tracks ΔR_{Probe} "TAG –μ" "TAG –μ" μ muon identified central track probe muon in the trigger p_T > 30 GeV central track and offline p_T > 30 GeV isolated track ?? central track "PROBE -µ" p_T > 20 GeV muon identified isolated - in the trigger? – offline? p_T > 15 GeV "PROBE -µ"

Photo from arXiv:1204.0952

Photo from arXiv:1003.0521

ATLAS-CONF-2012-042

ATLAS-CONF-2012-042