

UPPSALA UNIVERSITET

Search for resonant and non-resonant Higgs boson pair production in the $b\bar{b}\tau^+\tau^-$ decay channel with the ATLAS detector

Petar Bokan

supervisors:

Arnaud Ferrari, Pedro Sales de Bruin (Uppsala University) Stan Lai (University of Goettingen)

Partikeldagarna, Stockholm, 2017

Outline

- 0 Motivation for the di-Higgs searches and the $b\bar{b}\tau^+\tau^-$ final state.
- o The Run-2 (resolved) analysis status and other efforts.
- o The Run-2 analysis strategy
 - o Trigger and event selection
 - o Background estimation
 - o Results

○ High Luminosity Large Hadron Collider (HL-LHC) → $b\bar{b}\tau^+\tau^-$ prospects.

o Limit extrapolation: Run-2 analysis $\rightarrow (\sqrt{14} \text{ TeV}, 3000 \text{ fb}^{-1})$

o Summary

Motivation for the di-Higgs searches

0 Standard Model (SM) Higgs boson pair production:

SM Higgs boson pair production is very small due to destructive interference between these two diagrams (33.41 fb @ $\sqrt{s} = 13$ TeV)

Motivation for the di-Higgs searches

0 Standard Model (SM) Higgs boson pair production:

0 Looking for beyond the SM resonances decaying to two Higgs bosons.

Tested BSM hypotheses:

- o Randall-Sundrum graviton \rightarrow hh.
- o Heavy Higgs $H \rightarrow hh$. (Two Higgs Doublet Model - 2HDM)

Motivation for the di-Higgs searches

0 Standard Model (SM) Higgs boson pair production:

0 Looking for beyond the SM resonances decaying to two Higgs bosons.

Tested BSM hypotheses:

- o Randall-Sundrum graviton \rightarrow hh.
- o Heavy Higgs $H \rightarrow hh$. (Two Higgs Doublet Model - 2HDM)
- 0 Non-resonant BSM enhancements.

(due to new couplings, or modified Yukawa/self-coupling)

$hh \rightarrow b \bar{b} \tau^+ \tau^-$ final state

O Decay modes of the di-Higgs system and their relative branching fractions:

	bb	ww	π	ZZ	γγ
dd	33%				
ww	25%	4.6%			
π	7.4%	2.5%	0.39%		
ZZ	3.1%	1.2%	0.34%	0.076%	
γγ	0.26%	0.10%	0.029%	0.013%	0.0053%

 $b\bar{b}\tau^+\tau^-$ is a relatively clean final state and it still benefits from a relatively large branching fraction

O Sub-channels considered:

- o $\tau_{\text{lep}} \tau_{\text{had}}$ (branching ratio = 45.8%)
- $\tau_{had} \tau_{had}$ (branching ratio = 41.9%)

$hh \rightarrow b\bar{b}\tau^+\tau^-$ analysis

- Analysing data recorded during the 2015 and 2016 data taking periods. Corresponding to $\int Ldt = 36.1 \text{ fb}^{-1}$.
- o Publication is expected before Christmas.
- o Signals hypotheses tested:
 - o Non-resonant production: Standard Model di-Higgs signal.
 - o Resonant production: RS Kaluza-Klein graviton and 2HDM Heavy Higgs: m = 260, 275, 300, 325, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1000 GeV.
 - o Variations of the trilinear Higgs self-coupling (λ_{hhh}) strength will be tested as well.

$hh \rightarrow b \bar{b} \tau^+ \tau^-$ analysis

- Analysing data recorded during the 2015 and 2016 data taking periods. Corresponding to $\int Ldt = 36.1 \text{ fb}^{-1}$.
- o Publication is expected before Christmas.
- o Signals hypotheses tested:
 - o Non-resonant production: Standard Model di-Higgs signal.
 - o Resonant production: RS Kaluza-Klein graviton and 2HDM Heavy Higgs: m = 260, 275, 300, 325, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1000 GeV.
 - o Variations of the trilinear Higgs self-coupling (λ_{hhh}) strength will be tested as well.

Other efforts and plans:

- o 3rd generation of leptoquarks signal re-interpretation of the analysis.
- High Luminosity LHC Standard Model hh \rightarrow $b\bar{b}\tau^+\tau^-$ prospects.
- o Boosted regime analysis.
- o Include new 2017 data.
- o Combination result with the other di-Higgs channels.

Event selection

$ au_{ m lep} au$	had	$ au_{had} au_{had}$		
Single lepton trigger SLT	Lepton tau trigger LTT	Single tau trigger STT	Di-tau trigger DTT	
$1 \mathrm{e}/\mu$ and $1 \mathrm{medium}$	au of oppostite sign	2 medium $ au$ s of opposite sign		
$p_T^{e/\mu} > 25, 27 GeV$	$18\text{GeV} threshold$	$p_T^{lead {\cal T}} > 100, 140, 180 GeV$	$p_T^{lead \mathcal{T}} > 40 GeV$	
(for 24, 26 GeV triggers)	15 GeV $<~p_T^{\mu}~<$ SLT threshold	(for 80, 125, 160 GeV triggers)	$p_T^{subl \mathcal{T}} > 30 GeV$	
$p_T^{\mathcal{T}}~>~20~GeV$	$p_T^{\mathcal{T}}~>~30GeV$	$p_T^{subl \mathcal{T}}~>~20GeV$		
\geq 2 cent	ral jets	\geq 2 cent	ral jets	
$p_T>45,20GeV$	$p_T>80,20GeV$	$p_T>45,20GeV$	$p_T>80,20GeV$	
			$p_T>45,20GeV$ (2015 data)	
$m_{ au au}^{ m MMC} >$	60 GeV	$m_{ au au}^{ m MMC} >$	60 GeV	

- Signal region (SR): events with exactly 2 b-tagged jets.
- o A Boosted Decision Tree classification is applied to the SR.
- Events with 0, 1 b-jets, high transverse mass and "same-sign" events are used to define the control/validation regions.

Background estimation

- Hadronically decaying τ s are seen as narrow jets with small track multiplicity (1 or 3 tracks).
- Other jets can be misidentified as τ s.
- Data-driven methods used to estimate jet \rightarrow fake τ background for different processes.

Background estimation

- Hadronically decaying τ s are seen as narrow jets with small track multiplicity (1 or 3 tracks).
- $\,\circ\,$ Other jets can be misidentified as $\tau s.$
- $\circ~$ Data-driven methods used to estimate jet \rightarrow fake $\tau~$ background for different processes.

- ttbar normalization freely floated in the fit. Constrained by the low BDT region.
- o $Z \rightarrow \mu\mu + bb/bc/cc$ control region used to correct the $Z \rightarrow \tau\tau + bb/bc/cc$ normalization.

Z + Heavy Flavour normalization

- \odot The *Z* + *HF* cross-section is not well described by the Monte Carlo (Sherpa).
- A Z→ $\mu\mu$ + bb control region is defined to correct the Z + bb/bc/cc normalization in the bb $\tau\tau$ signal region.
- o The event selection is very similar to the one used for the signal region.

In addition: 81 $< m_{\mu\mu} <$ 101 GeV and ($m_{bb} <$ 80 GeV or $m_{bb} >$ 140 GeV), one-bin region.

0 For the $\tau_{\text{lep}} \tau_{\text{had}}$ Standard Model signal fit (background only hypothesis):

 $SF(Z + HF) = 1.44 \pm 0.17.$

• Similar results for other signals.

Results, non-resonant signal

- A BDT score in the 2b-tag signal region is used as the final discriminant for the fitting and limit setting.
- o Work-in-progress results:

channel	-2σ	-1σ	expected $\sigma/\sigma_{\rm SM}$	$+1\sigma$	$+2\sigma$
			95% C.L. limit		
$\tau_{\text{lep}} \tau_{\text{had}} \text{ SLT}$	14.02	18.82	26.12	36.35	48.73
$\tau_{\rm lep} \tau_{\rm had} \ { m LTT}$	38.16	51.28	71.10	98.95	132.65
$ au_{ m lep} au_{ m had}$	13.67	18.35	25.47	35.44	47.51
$ au_{had} au_{had}$	8.40	11.28	15.66	21.79	29.21
combined	7.01	9.14	13.06	18.18	24.37

0 Observed (expected) 95% C.L. limit on σ/σ_{SM} :

channel	bbbb	bbWW	bb au au	$bb\gamma\gamma$	$WW\gamma\gamma$
ATLAS	29 (38)	-	-	117 (161)	747 (386)
CMS	342 (308)	410 (227)	28 (25)	91 (90)	-

HL-LHC SM hh \rightarrow b $\bar{b}\tau^+\tau^-$ prospects

Run-2 analysis:

- o Large fraction of the background for both sub-channels is estimated in a data-driven way.
- o Huge improvement after switching from a cut-based to the BDT based analysis.
- For those reasons, extrapolation of the Run-2 results is a prefered way of studying the SM di-Higgs HL-LHC prospects in the $b\bar{b}\tau^+\tau^-$ channel.
- o Similar strategy used for the SM hh \rightarrow 4b prospects study.

Extrapolation steps:

0 All the distributions (including the statistical uncertainties) are scaled by

$$f = (\int Ldt)_{target}/(\int Ldt)_{2015+2016}$$

- All the distributions are scaled by 1.18 to account for an increase in cross-sections that comes from a change in gluon luminosity.
- ttbar and Z + HF normalizations fixed to the best Run-2 analysis fit results.

HL-LHC SM hh \rightarrow $b\bar{b}\tau^+\tau^-$ prospects

• Assuming the same triggers and no improvements for any of the systematic uncertainties.

Extrapolation results:

channel	stat (syst)
4b	1.50 (5.20)
$ au_{ ext{lep}} au_{ ext{had}}$	1.71 (8.86)
$\tau_{\rm had} \tau_{\rm had}$	0.84 (2.44)
$b\bar{b}\tau^+\tau^-$	0.75 (2.38)

- Many improvements since the last iteration of the analysis.
 - 0 Lepton + τ trigger category included.
 - $~\circ~$ Jet \rightarrow fake τ background modeling improvements.
 - $~\circ~~Z \rightarrow \tau \tau + bb/bc/cc$ modeling improved.
 - o Moved from cut-based to the BDT based analysis.
- For the non-resonant search, $b\bar{b}\tau^+\tau^-$ is currently the most sensitive channel.
- Measuring the λ_{hhh} is one of the primary physics goals for HL-LHC and beyond. Promising HL-LHC prospects of the $b\bar{b}\tau^+\tau^-$ channel.

backup

Boosted Decision Tree training

Variable	Tlep Thad SLT-resonant	Tlep Thad non-resonant LTT-resonant	$ au_{ m had} au_{ m had}$
m _{hh}			
m ^{MMC}			
m _{bb}			
$\Delta R(au, au)$			
$\Delta R(b,b)$			
E _T ^{miss}			
$E_T^{miss}\phi$ centrality			
$m_T^{l u}$			
$\Delta \phi(\mathbf{h},\mathbf{h})$			
$\Delta p_{\rm T}(l, \tau)$			
Sub-lead b-jet			

used for the BDT

BDT trainings done on 2b-tag signal region events.

- BDT clasifier trained against all dominant backgrounds.
- One training for each signal type (and mass) hypothesis.

An example of BDT response

($\tau_{\rm lep}\,\tau_{\rm had}\,$ SLT, Heavy Higgs 2HDM $m_{H}\,=\,$ 300 GeV, signal normalized to the background)

Boosted Decision Tree output

 $\tau_{had} \tau_{had} SLT$

BDT input variables used for the training on the SM signal.

- o 2b-tag signal region
- o Signal yield multiplied by 1000.

BDT output distribution:

o Signal yield multiplied by 25.

o Region that contains 90% of the signal is blinded.

Combined Fake Factor Method

Jet $\rightarrow \tau$ fake background contribution from all processes with jets (QCD, W+jets, ttbar). Estimated using a combined Fake Factor (FF) method.

 $FF = \frac{N(\tau)}{N(anti - \tau)}$ as function of τp_T and prongness, separately for SLT and LTT category, for each process in separate CRs:

(anti- τ : τ -ID requirement inverted: **!BDTMedium +** τ -ID BDT > 0.35)

QCD CR	inverted lepton isolation (e/μ fail loose isolation working point)
W+jets CR	$m_T(l, MET) > 40$ GeV, 0b-tag region
ttbar CR	$m_T(l, MET) > 40$ GeV, 2b-tag region

These are used to calculate:

$$FF_{comb} = FF_{QCD} \times r_{QCD} + FF_{ttbar/W+jets} \times (1 - r_{QCD})$$

where r_{OCD} is a fraction of multi-jet events in the anti- τ signal region.

 $r_{QCD} = N_{multijets}^{data-driven} / (data - MC_{true})$

ABCD Matrix Fake Factor Method

• A data-driven "matrix" method is used to estimate the multi-jets background!

2D fake factors, as a function of leading and sub-leading $\tau \; p_T$

(anti- τ : τ -ID requirement inverted: **!BDTMedium +** τ -ID BDT > 0.35)

- Separate fake-factors are calculated for STT and DTT events, and for 1-prong and 3-prong hadronic taus.
- 1b-tag FFs used for 2b-tag region due to the lack of statistics. (transfer factor applied)

 $(multi-jet)|_{OS,ID} = FF * (data - MC)|_{OS,anti-ID}$

Fake Rate Method

• Use $\tau_{lep}\tau_{had}$ ttbar CR ($m_T^W > 80$ GeV) to derive fake rates (FR)

Separately for 1-prong and 3-prong as a function of $\tau \; p_T$ eta

• Applied to all non-truth-matched ttbar MC events according to which tau is fake.

