

Search for doubly charged Higgs with ATLAS at $\sqrt{s}=13$ TeV

SIGI

Katja Mankinen Partikeldagarna, Stockholm, 2017

Motivation

- SM events with high pT, isolated, same-charge leptons are rare, and provide a very powerful signature towards discoveries.
- Doubly charged Higgs in many BSM theories, usually by adding a scalar triplet to the SM.
 - left-right symmetric models
 - the little Higgs model
 - type II seesaw
 - Zee-Babu
 - Georgi-Machacek...

Drell-Yan pair production of H^{±±}

Search overview

- The search uses the *pp* data sample corresponding to 36.1 fb⁻¹ of integrated luminosity collected in 2015 and 2016 by the ATLAS detector at the LHC at $\sqrt{s}=13$ TeV.
- Searching for H^{±±} in multi-lepton final states, Drell-Yan production only, with v_Δ=0 $\Gamma(H^{\pm\pm} \to \ell^{\pm} \ell'^{\pm}) = k \frac{h_{\ell\ell'}^2}{16\pi} m(H^{\pm\pm})$
- This analysis studies the case where H^{±±} decays only into light leptons:

$$\sum_{\ell,\ell'} \operatorname{Br}(H^{\pm\pm} \to \ell^{\pm}\ell'^{\pm}) + \operatorname{Br}(H^{\pm\pm} \to X) = 100\%$$

where X accounts for decays into particles not directly considered in the selection of the analysis or outside the acceptance.

- m(H^{±±}) ∈ [250, 1300] GeV
- submitted to EPJC, <u>https://arxiv.org/abs/1710.09748</u>

Analysis regions

	constr	ain back	grounds	validate					
	in the fit			backgrounds					
Region	Control Regions			Validation Regions			Signal Regions		
Channel	OCCR	DBCR	4LCR	SCVR	3LVR	4LVR	1P2L	1P3L	2P4L
electron ch.	$e^{\pm}e^{\mp}$	$e^{\pm}e^{\pm}e^{\mp}$		$e^{\pm}e^{\mp}$	$e^{\pm}e^{\pm}e^{\mp}$		$e^{\pm}e^{\pm}$	$e^{\pm}e^{\pm}e^{\mp}$	
mixed ch.	_0	$e^{\pm}\mu^{\pm}\ell^{\mp}$	$4\ell^{\pm}$	$\ell^{\pm}\ell'^{\pm}$	$e^{\pm}\mu^{\pm}\ell^{\mp}$	$4\ell^{\pm}$	$\ell^{\pm}\ell'^{\pm}$	$e^{\pm}\mu^{\pm}\ell^{\mp}$	$4\ell^{\pm}$
muon ch.	_	$\mu^{\pm}\mu^{\pm}\mu^{\mp}$		$\mu^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}\mu^{\mp}$		$\mu^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}\mu^{\mp}$	
mass range $[GeV]$									
$m(\ell^{\pm}\ell^{\pm})$ electron ch.	[130, 2000]	[90, 200)		[130, 200)	[90, 200)		$[200,\infty)$	$[200,\infty)$	
$m(\ell^{\pm}\ell^{\pm})$ mixed ch.	-	[90, 200)	[150, 200)	[130, 200)	[90, 200)	[60, 150)	$[200,\infty)$	$[200,\infty)$	$[200,\infty)$
$m(\ell^\pm\ell^\pm)$ muon ch.		[60, 200)		[60, 200)	[60, 200)		$[200,\infty)$	$[200,\infty)$	
selection									
<i>b</i> -jet veto	1	1	~	1	✓	1	1	1	1
Z veto	-	inv.	-	=	\checkmark	-	-	1	1
$\Delta R(\ell^{\pm}\ell^{\pm}) < 3.5$	- 1	-	-	-	-	-	1	1	-
$p_{\rm T}(\ell^\pm\ell^\pm) > 100~{\rm GeV}$	- 3	-	-	-	-	-	1	1	-
$\sum p_{\rm T}(\ell) > 300 { m ~GeV}$	=	-	H	-	н	-	1	1	-
$\Delta M/ar{M}$ cut	-	-	-	-	-	-	-		1

Backgrounds

Prompt

real prompt leptons: Z(W/Z), tt(W/Z), W[±]/Z

- real e or µ from non-prompt decays, e.g. from heavy flavored mesons
- jets mis-reconstructed as electrons

Charge-flip

oppositely charged leptons with charge mis-ID: Z/ γ *, tt, tW , W[±]W[∓]

estimated with simulation

11

data-driven estimation with the fake factor method

charge-flip probability measured in a Z→ee sample with a likelihood fit

Invariant mass distributions

ATLAS-CONF-2017-053

Fit a maximum-likelihood fit of the invariant mass distribution

post-fit regions

post-fit background uncertainty

Upper limits on the cross-section

Upper limit on the cross-section for $pp \rightarrow H^{\pm\pm}H^{\mp\mp}$ in the fit for several branching ratio working points

Lower limits on $H_{L}^{\pm\pm}$ mass

Expected and observed lower limit on $H_{L}^{\pm\pm}$ mass for all branching ratio combinations that sum to 100%.

Lower limits on $H_{L}^{\pm\pm}$ mass

- The ATLAS detector at LHC has been used to search for doubly charged Higgs bosons in the same-charge dilepton invariant mass spectrum at high values.
- The search scans through various H^{±±} BRs in several exclusive signal regions.
- No significant evidence of signal was observed.
- Limits on the production cross-section and the lower limit on $m(H^{\pm\pm})$ were derived.
- Observed lower limits on m(H^{±±}_L) vary from 770 GeV to 870 GeV for BR(H^{±±}→ℓ[±]ℓ[±])=100% and are >450 GeV for Br(H^{±±}→ℓ[±]ℓ[±])>10% for any combination of partial BRs.
- Observed lower limits on m(H^{±±}_R) vary from 670 GeV to 760 GeV for BR(H_R^{±±}→ℓ[±]ℓ[±])=100% and are >320 GeV for Br(H_R^{±±}→ℓ[±]ℓ[±])>10% for any combination of partial BRs.

Backup slides

Lower limits on $H_{R}^{\pm\pm}$ mass

Expected and observed lower limit on $H_R^{\pm\pm}$ mass for all branching ratio combinations that sum to 100%.

Lower limits on $H_{R}^{\pm\pm}$ mass

the minimum observed and expected limit

 $H_R^{\pm \pm}$ decays only into electron-muon pairs and "X", where "X" does not enter any of the SRs

