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The virus of influenza
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The virus of the flu evolves so fast that it can reinfect the
same individual several times even from one year to the
next
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Basic facts

There are three fundamental groups of flu viruses: A,
BetC
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Basic facts

There are three fundamental groups of flu viruses: A,
BetC

Type A originates global epidemics (pandemics)

Type A is classified in subtypes HANn according to the
nature of its HA (Hemoagglutinine) and NA
(Neuroaminidase) proteins

Today’s dominant subtype is H3N2, but subtype H1N1
(which had disappeared at the beginning of the '60s) is
also present (maybe due to a laboratory accident)
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The phylogenetic tree for HA

Flu: type A, subtype H3N2, gene HA1
Fitch, Bush, Bender and Cox, 1997
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Properties of the tree

The tree exhibits a well-defined backbone: branches
have a median lifetime of 1.45 years
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Properties of the tree

The tree exhibits a well-defined backbone: branches
have a median lifetime of 1.45 years

At any given time, the strain nearest to the backbone
can be identified by looking at the number of nonsilent
mutations in 18 special codons of the HA gene

Bush, Bender, Subbarao, Cox and Fitch, 1999

The tree does not branch out over long times
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The puzzle

Why does the dominant strain change fast, but the
virus does not diversify?
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Epidemiology and evolutionary
dynamics
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Flu vs. in-host HIV evolution
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The classic SIR model: Definition
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The classic SIR model: Behavior
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Coexisting strains: Modified SIR
model

Viral strain defined by &
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Coexisting strains: Modified SIR
model

Viral strain defined by &
i (t): Population infected by strain k at time ¢

s.(t): Population susceptible to infection by strain £ at
time t

Cross-immunization: With probability K, an
iIndividual with antibodies against strain £ is also
Immune against strain k
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One-dimensional strain space: A
travelling wave

Andreasen, Lin and Levin, 1997
Mutations generate new strains
Cross-immunity is short-ranged in |k — £/|
Akin to spatial propagation of epidemics
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Evolution In strain space
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Peak oscillations

Gog and Grenfell, 2002; Lin, Andreasen, Casagrandi and
Levin, 2003
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Long-lasting disease (HIV)?
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Comments

The “speed of evolution” dk/dt is compatible with the
“natural” values of the parameters p (1/one week), A

(~ 1/(50 = 70 years), § (probably ~ 6 + 10) and of the
observed substitution rate of the viral strains
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Comments

The “speed of evolution” dk/dt is compatible with the
“natural” values of the parameters p (1/one week), A

(~ 1/(50 = 70 years), § (probably ~ 6 + 10) and of the
observed substitution rate of the viral strains

The lack of diversification is assumed rather than
derived

Need to consider a more general topology of strain
space
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Many strains

SIR model difficult to generalize:

Cross-immunization with n strains requires at least 2"
states

Need to keep past data indefinitely

Finite population size constraint hard to implement
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The bitstring model

Girvan, Callaway, Newman and Strogatz, 2002

Viral strain & identified by a Boolean string (1,1,0,...)

Cross-immunization effectiveness function of the
Hamming distance

du(k, k) = (ki — k)’

(

Analysis via an individual-based model: Specific (life
long) immunity embedded in individual infection history

Yo ={EW, KW}, a=1,...,N
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Disease Incidence
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Phase diagram
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Comments

Either extinction or boundless proliferation!
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Comments

Either extinction or boundless proliferation!
100% of the population is infected in the steady state!

Cross-immunization 1s not effective!

Branching process:
02 X 12X

d > r: Extinction

0 < r. Boundless proliferation
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Short term infinite-range immunity

Ferguson, Galvani and Bush (2003) conjecture the
existence of a short term (~ 6 months) immunity active
against all viral strains, after recovery from an infection
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Short term infinite-range immunity

Ferguson, Galvani and Bush (2003) conjecture the
existence of a short term (~ 6 months) immunity active
against all viral strains, after recovery from an infection

This conjecture is contained in a very complex model,
with geographical distribution, many parameters, etc.

It has but scanty observational support

IS It sufficient alone to describe the observed behavior?
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Modified bitstring model

Tria, Lassig, Peliti and Franz, 2004

Individual-based models with bitstring strains
Short-range persistent cross-immunity
Short-term infinite-range cross-immunity

Each viral strain £ is characterized by its “bare”
Infectivity (,, extracted at random
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Observables

# individuals infected by strain £: v,

Effective number of strains

n= zk:yk 2/ N7

k

Incidence of the disease

]:Zyk

k
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Effects of short immunity: Incidence
and # strains
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Random infectivity and no short
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Random infectivity and short
Immunity

Incidence and strain number

60000 T T T T T T T 250
50000
-4 200
40000 |-
- 150
3 2
g 30000 f- IS
€ @
4 100
20000 |+
' 4 50
10000 Il
0 0

Stockholm. Mav 8th. 2008 — n. 27/43



Random infectivity and short
Immunity

Average infectivity and Hamming distance
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With higher time resolution
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Phylogenetic tree
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Comments

The randomness in the infectivity parameter is difficult
to check but not unreasonable

The short-term wide-range immunity has little evidence
In its favor

Some properties of the epidemiological dynamics are
lacking: e.g., seasonality

The topology of the antigenic space can be more
complex
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Clusters

Plotkin, Dushoff and Levin, 2002
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Seasonality

Is the strong seasonality of influenza epidemics linked to
the limited duration of immunity due to clusters?

Plotkin, Dushoff, Levin and Earn, 2004
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Epochal evolution: Cluster
transitions

Koelle, Cobey, Grenfell and Pascual, 2006
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Effects of cluster transitions
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Clusters trees and their relations
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antigenic space axis

Recker,

antigenic space axis

Antigenic types

Pybus, Nee and Gupta, 2007
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Explanation

The plot is a projection on the plane of the two
principal factors

The path followed in this plane looks more like a
zig-zag than a diffusion

Antigenic types seem to reappear over and over again

This happens In spite of an ongoing change at the
whole-genome level
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Comments

The “antigenic space” has a stranger structure than
suspected

The lack of diversification is not directly explained by
the neutral network model

Antigenic transition is NOT equivalent to shorter host
lifetime

These model to not take into account recombination
which is known to take place during epidemics
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Conclusions

In the dynamics of influenza the epidemiological and
the evolutionary levels are intertwined
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Conclusions

In the dynamics of influenza the epidemiological and
the evolutionary levels are intertwined

Answering the puzzle of influenza might also shed light
on the behavior of the HIV infection

But there is still quite some way to go!
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