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Plan

* Motivation:
» What 1s special about “astrophysical” fluid dynamics?
* Which method to choose?

 Basics of Lagrangian Fluid Dynamics

* Smooth Particle Hydrodynamics (SPH)
e “Vanilla Ice”
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0. Motivation

* Deal here with ideal fluid dynamics, 1gnore effects such as
viscosity, conductivity

* hydrodynamics equations historically among the first partial differential
equations ever written down, yet surprisingly difficult to solve

» which method 1s “best” 1s often problem-dependent
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“Horses for courses’
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When /why use Lagrangian hydrodynamics?

Lagrangian hydrodynamics: . .. ' . collapse

 automatic adaptation to complicated geometries
* no restriction to “computational domain”

e “vacuum 1s vacuum”

* exact conservation can be “hard-wired”

* advection exact

e casy coupling to n-body methods

e very accurate (Newtonian) self-gravity via trees




Some examples

Dimensions: 82500, AU Time: O.yr

® dynamical star formation
calculation

modeled physics:
e self-gravity
* gas dynamics
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e Tidal disruption of a white dwarf by an intermediate-mass black hole

modeled physics:

e self-gravity

e gravity black hole
via pseudo-potential

e gas dynamics

* nuclear burning
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e Disk “warped” by a rotating central black hole
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modeled physics:
e gravity from black hole
e gas dynamics
e torque on 1nner disk

-6
log density

-2
(Simulation Lodato)



® collision between two neutron stars (f=2)

t=0 ms

log temperature [ MeV ]
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e collision between a neutron star and a low-mass black hole (SMo, B=1)
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Long-term evolution of NSNS-merger debris  (Rosswog et al., 2014)

e typical merger simulations restricted to = 20 ms,
sound speed in neutron star = 0.3¢, CFL condition: At < Ax/cs~ 1077 s

- cut out central remnant, replace by potential, follow ejecta

- 1nclude heating by radioactive decays

- follow evolution up to 100 years “100 years, but still in shape”

1.3 & 1.4Mg




comparison Eulerian vs. Lagrangian
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1. Basics of Lagrangian fluid dynamics

* 1n all of this lecture: restriction to 1deal fluids (no viscosity, conductivity...)
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agrangian time derivative  —. or o

(other names: “Convective derivative”, “material derivative”, “substantial derivative”, ...)

gl f (7, t = "rate of change of quantity f of a fluid parcel
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example: write (Eulerian) continuity equation in Lagrangian form

dp
o

5
V(pi) = 0 :a—':—l—ﬁ-v,o—l—pv-ﬁ

continuity equation
Lagrangian form




First law of thermodynamics (for our purposes)

* conservation of energy

e from thermodynamics: dU = Dds — PdV

/

“change of energy”  “changeofentropy>  “work done via volume change”

» for our purposes: want quantities “per mass”

Ll “energy per mass’”
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* side remark: for the relativistic cases we will express everything “per baryon™
p — M “baryon number density” (in local fluid rest frame)




Equations ideal, Lagrangian hydrodynamics

e conservation of mass:

e conservation of energy:
clikais I
P dt
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2. Numerical Lagrangian hydrodynamics

e task: “discretize” = replace continuous equations by a finite set of values so
so that a computer can deal with them
e.g. p(Z,t) — p' “density in comp.element a at time t"“

* many different possibilities
* long wish-list:

e “accurate”

* “simple”: implement new physics
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Types of numerical schemes

ALE=

Rt L Adgptive Lagrangian Eulegrian

* usually on a (fixed) mesh/ ¢ computational elements % ¢ computational elements

move with fluid velocity © move with velocity not
* calculate fluxes betweer: necessarily = fluid

cells e often with particles velocity

« computational elements
can be (e.g. Voronoi)
cells, particles...




Importance of conservation

* keep in mind:
» we rarely have all the numerical resolution we would want
* we are solving “conservation laws”

=> 1f conservation 1s “hardwired” (independent of resolution), we can hope to
stay close to the real, physical solution

* Example 1: “Order vs. Conservation™
= Kepler problem with too large a time step

4th order, 't 2nd order angular momentum
Stoermer-Verlet conservation built-in!

Runge Kutta
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* Example 2: “How much non-conservation can we tolerate?”

t=0 P,

=> mass transfer in white dwarf binary
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2.1 Smooth Particle Hydrodynamics (SPH)

kernel Wn)

particle of
interest

* basic 1deas:

* replace fluid by finite set of particles

neighbo(j} &

* particles move with local fluid velocities particle

* cach particle carries a smooth “kernel function”; used
to recover smooth fields and calculate gradients

* aim: particles should move in a way so that mass, energy, momentum and
angular momentum are conserved “by construction”



2.1.1 Kernel interpolation

Integral approximation

o idea similar to 5-distribution:  £(F) = / FF)O(F — 7) dV

e smooth approximation: Fi(7) = / FONW (7 = 1, hJ{

“smoothed approximation” “original function” ‘“smoothing kernel” “smoothing length”




particle approximation

—)

e write integral approximation as /u(7) = / =W (7 =17, h) p(r)d®r

“particle mass”
approximate as

22

“mass density

“SPH approximant”

“at position of particle b”




gradient approximation

* several possibilities

» casiest: take straight-forward gradient of approximant

AR =3 D2 AW (|7 =7, b)
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Which kernels?

» for now just:

(a) “compact support”
=> zero outside of given radius

= determined by “smoothing length™ h
= sum over local neighbours
(avoid N2-behaviour)
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(b) “bell-shaped”

(c) “radial™:
W(ry — 7y, h) = W(|Fy — 7|, h)

=> crucial for exact angular momentum conservation



Kernel derivatives

We collect here a few relations that are often used throughout the text. We use the notation
Tppe = Th — Thy The = |Thpe| and Uy = Uy — Ug. For the kernels we ignore for a moment
derivatives coming from the smoothing lengths. We will address this topic later separately.
By straight-forward component wise differentiation one finds

(75 — 7% ) (0pa — Oka)
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We will also need

Orap dZq + Orap dYa + Orap dza
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where we have used 9dr,;,/0z), = —0r,;/0z, etc.
For kernels that only depend on the magnitude of the separation, W (7, -7 ) = W/(|
/vi the derivative with respect to the coordinate of an arbitrary particle a is
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where we have use Eq. (3.20). This yields in particular

2y, = Dl Wey Wl __ Dy, important for
0 Oray OF, Ora Oray, O o, ( )
3.24

3. exact conservation

For the time derivative of the kernel we have

(?"Vab drab _ (')I'Vab ('Fa — 'f-"b) . (’lj"a - l-fb) . 0H/ab - - R .
Oray dt | Orw rat Brey o0t C Jas ValWay - (339) energy equation




2.1.2 “Vanilla ice SPH”

“Discretize-and-hope-approach™

a) Momentum equation

* try a “brute-force discretization" of

using

Yields S TN _vaaWab
b




Exercise:

try to find a discretization of the momentum equation
that ensures exact momentum conservation




can this be fixed? Yes, easily...

E VP \Y
e but now start from: \V/ (—) LI g _2p

1.€.



b) Energy equation

e straight-forward translation of first law of thermodynamics:




c¢) Continuity equation

e most common approach: keep particle masses fix, my= const
=> no need to solve momentum equation!

exact mass conservation!

e but 1f wanted...
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 so far: momentum and mass conservation;

= What about angular momentum conservation?

e torque on particle a: M, =7, x F, = 7, x (ma d”“) — 7 X Z A

e total torque:

Ccl‘l_f = ZMaZZFaXﬁba:% ZFaXﬁba‘l‘Z'FaXﬁ.

a,b a,b
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 What about energy conservation?

e change 1n total energy:
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